Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Wend is active.

Publication


Featured researches published by Peter Wend.


Genes & Development | 2008

Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice

Tamara Grigoryan; Peter Wend; Alexandra Klaus; Walter Birchmeier

Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.


Seminars in Cell & Developmental Biology | 2010

Wnt signaling in stem and cancer stem cells.

Peter Wend; Jane D. Holland; Ulrike Ziebold; Walter Birchmeier

Canonical Wnt signaling supports the formation and maintenance of stem and cancer stem cells. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment how embryonic and tissue stem cells are generated and maintained, and how Wnt signaling might be involved. The core of this review highlights the roles of Wnt signaling in stem and cancer stem cells of tissues such as skin, intestine and mammary gland. Lastly, we refer to the characterization of novel and powerful inhibitors of canonical Wnt signaling and describe attempts to bring these compounds into preclinical and clinical studies.


Nature Medicine | 2012

Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1

Kristin Stock; Jitender Kumar; Michael Synowitz; Stefania Petrosino; Roberta Imperatore; Ewan St. John Smith; Peter Wend; Bettina Purfürst; Ulrike A. Nuber; Ulf Gurok; Vitali Matyash; Joo-Hee Wälzlein; Sridhar R Chirasani; Gunnar Dittmar; Benjamin F. Cravatt; Stefan Momma; Gary R. Lewin; Alessia Ligresti; Luciano De Petrocellis; Luigia Cristino; Vincenzo Di Marzo; Helmut Kettenmann; Rainer Glass

Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics.


Brain | 2010

Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells

Sridhar R Chirasani; Alexander Sternjak; Peter Wend; Stefan Momma; Benito Campos; Ilaria M. Herrmann; Daniel Graf; Thimios A. Mitsiadis; Christel Herold-Mende; Daniel Besser; Michael Synowitz; Helmut Kettenmann; Rainer Glass

Glioblastoma cells with stem-like properties control brain tumour growth and recurrence. Here, we show that endogenous neural precursor cells perform an anti-tumour response by specifically targeting stem-like brain tumour cells. In vitro, neural precursor cells predominantly express bone morphogenetic protein-7; bone morphogenetic protein-7 is constitutively released from neurospheres and induces canonical bone morphogenetic protein signalling in stem-like glioblastoma cells. Exposure of human and murine stem-like brain tumour cells to neurosphere-derived bone morphogenetic protein-7 induces tumour stem cell differentiation, attenuates stem-like marker expression and reduces self-renewal and the ability for tumour initiation. Neurosphere-derived or recombinant bone morphogenetic protein-7 reduces glioblastoma expansion from stem-like cells by down-regulating the transcription factor Olig2. In vivo, large numbers of bone morphogenetic protein-7-expressing neural precursors encircle brain tumours in young mice, induce canonical bone morphogenetic protein signalling in stem-like glioblastoma cells and can thereby attenuate tumour formation. This anti-tumour response is strongly reduced in older mice. Our results indicate that endogenous neural precursor cells protect the young brain from glioblastoma by releasing bone morphogenetic protein-7, which acts as a paracrine tumour suppressor that represses proliferation, self-renewal and tumour-initiation of stem-like glioblastoma cells.


Embo Molecular Medicine | 2013

WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer

Peter Wend; Stephanie Runke; Korinna Wend; Brenda Anchondo; Maria Yesayan; Meghan Jardon; Natalie Hardie; Christoph Loddenkemper; Ilya V. Ulasov; Maciej S. Lesniak; Rebecca J. Wolsky; Laurent A. Bentolila; Stephen G. Grant; David Elashoff; Stephan Lehr; Jean J. Latimer; Shikha Bose; Husain Sattar; Susan A. Krum; Gustavo A. Miranda-Carboni

Wnt/β‐catenin signalling has been suggested to be active in basal‐like breast cancer. However, in highly aggressive metastatic triple‐negative breast cancers (TNBC) the role of β‐catenin and the underlying mechanism(s) for the aggressiveness of TNBC remain unknown. We illustrate that WNT10B induces transcriptionally active β‐catenin in human TNBC and predicts survival‐outcome of patients with both TNBC and basal‐like tumours. We provide evidence that transgenic murine Wnt10b‐driven tumours are devoid of ERα, PR and HER2 expression and can model human TNBC. Importantly, HMGA2 is specifically expressed during early stages of embryonic mammogenesis and absent when WNT10B expression is lost, suggesting a developmentally conserved mode of action. Mechanistically, ChIP analysis uncovered that WNT10B activates canonical β‐catenin signalling leading to up‐regulation of HMGA2. Treatment of mouse and human triple‐negative tumour cells with two Wnt/β‐catenin pathway modulators or siRNA to HMGA2 decreases HMGA2 levels and proliferation. We demonstrate that WNT10B has epistatic activity on HMGA2, which is necessary and sufficient for proliferation of TNBC cells. Furthermore, HMGA2 expression predicts relapse‐free‐survival and metastasis in TNBC patients.


Frontiers in Endocrinology | 2012

Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging

Korinna Wend; Peter Wend; Susan A. Krum

The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women’s Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.


The EMBO Journal | 2013

Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours

Peter Wend; Liang Fang; Qionghua Zhu; J. Schipper; Christoph Loddenkemper; Frauke Kosel; Volker Brinkmann; Eckert K; Simone Hindersin; Jane D. Holland; Stephan Lehr; Michael Kahn; Ulrike Ziebold; Walter Birchmeier

We show that activation of Wnt/β‐catenin and attenuation of Bmp signals, by combined gain‐ and loss‐of‐function mutations of β‐catenin and Bmpr1a, respectively, results in rapidly growing, aggressive squamous cell carcinomas (SCC) in the salivary glands of mice. Tumours contain transplantable and hyperproliferative tumour propagating cells, which can be enriched by fluorescence activated cell sorting (FACS). Single mutations stimulate stem cells, but tumours are not formed. We show that β‐catenin, CBP and Mll promote self‐renewal and H3K4 tri‐methylation in tumour propagating cells. Blocking β‐catenin–CBP interaction with the small molecule ICG‐001 and small‐interfering RNAs against β‐catenin, CBP or Mll abrogate hyperproliferation and H3K4 tri‐methylation, and induce differentiation of cultured tumour propagating cells into acini‐like structures. ICG‐001 decreases H3K4me3 at promoters of stem cell‐associated genes in vitro and reduces tumour growth in vivo. Remarkably, high Wnt/β‐catenin and low Bmp signalling also characterize human salivary gland SCC and head and neck SCC in general. Our work defines mechanisms by which β‐catenin signals remodel chromatin and control induction and maintenance of tumour propagating cells. Further, it supports new strategies for the therapy of solid tumours.


Acta Physiologica | 2012

The role of WNT10B in physiology and disease

Peter Wend; Korinna Wend; Susan A. Krum; Gustavo A. Miranda-Carboni

Wnt10b is a member of the Wnt ligand gene family that encodes for secreted proteins, which activate the ancient and highly conserved Wnt signalling cascade. The Wnt pathway has been shown to be essential for embryonic development, tissue integrity, and stem cell activity, but if deregulated, also causes disease such as cancer. Although the 19 different Wnt ligands found in both human and mouse can activate several branches of the Wnt pathway, WNT10B specifically activates canonical Wnt/β‐catenin signalling and thus triggers β‐catenin/LEF/TCF‐mediated transcriptional programs. In this review, we highlight the unique functions of WNT10B and mechanisms of how WNT10B acts in the immune system, mammary gland, adipose tissue, bone and skin. In these organs, WNT10B has been well established to be involved in signalling networks controlling stemness, pluripotency and cell fate decisions. Deregulation of these processes causes diseases such as breast cancer, obesity and osteoporosis. Compelling evidence suggests that WNT10B is a valuable candidate for the development of therapeutic regimens for human diseases.


Journal of Cellular Biochemistry | 2013

ERα regulates lipid metabolism in bone through ATGL and perilipin.

Korinna Wend; Peter Wend; Brian G. Drew; Andrea L. Hevener; Gustavo A. Miranda-Carboni; Susan A. Krum

A decrease in bone mineral density during menopause is accompanied by an increase in adipocytes in the bone marrow space. Ovariectomy also leads to accumulation of fat in the bone marrow. Herein we show increased lipid accumulation in bone marrow from estrogen receptor alpha (ERα) knockout (ERαKO) mice compared to wild‐type (WT) mice or estrogen receptor beta (ERβ) knockout (ERβKO) mice. Similarly, bone marrow cells from ERαKO mice differentiated to adipocytes in culture also have increased lipid accumulation compared to cells from WT mice or ERβKO mice. Analysis of individual adipocytes shows that WT mice have fewer, but larger, lipid droplets per cell than adipocytes from ERαKO or ERβKO animals. Furthermore, higher levels of adipose triglyceride lipase (ATGL) protein in WT adipocytes correlate with increased lipolysis and fewer lipid droplets per cell and treatment with 17β‐estradiol (E2) potentiates this response. In contrast, cells from ERαKO mice display higher perilipin protein levels, promoting lipogenesis. Together these results demonstrate that E2 signals via ERα to regulate lipid droplet size and total lipid accumulation in the bone marrow space in vivo. J. Cell. Biochem. 114: 1306–1314, 2013.


Journal of Cell Science | 2014

Intracellular glycine receptor function facilitates glioma formation in vivo.

Benjamin Förstera; Omar Dildar a Dzaye; Aline Winkelmann; Marcus Semtner; Bruno Benedetti; Darko Markovic; Michael Synowitz; Peter Wend; Michael Fähling; Marie-Pierre Junier; Rainer Glass; Helmut Kettenmann; Jochen C. Meier

ABSTRACT The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors are enriched in the neurotransmitter glycine, we studied the expression and function of glycine receptors (GlyRs) in glioma cells. Human brain tumor biopsies selectively expressed the GlyR &agr;1 and &agr;3 subunits, which have nuclear localization signals (NLSs). The mouse glioma cell line GL261 expressed GlyR &agr;1, and knockdown of GlyR &agr;1 protein expression impaired the self-renewal capacity and tumorigenicity of GL261 glioma cells, as shown by a neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore showed that the pronounced tumorigenic effect of GlyR &agr;1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR &agr;1 and &agr;3 loops rescued the self-renewal capacity of GlyR &agr;1 knockdown cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as new potential targets for brain tumor therapies.

Collaboration


Dive into the Peter Wend's collaboration.

Top Co-Authors

Avatar

Helmut Kettenmann

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Walter Birchmeier

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Korinna Wend

University of California

View shared research outputs
Top Co-Authors

Avatar

Susan A. Krum

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Glass

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar

Sridhar R Chirasani

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Stefan Momma

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge