Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Y. Wielinga is active.

Publication


Featured researches published by Peter Y. Wielinga.


Atherosclerosis | 2011

Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models

Robert Kleemann; Lars Verschuren; Martine C. Morrison; Susanne Zadelaar; Marjan van Erk; Peter Y. Wielinga; Teake Kooistra

OBJECTIVE Polyphenols such as quercetin may exert several beneficial effects, including those resulting from anti-inflammatory activities, but their impact on cardiovascular health is debated. We investigated the effect of quercetin on cardiovascular risk markers including human C-reactive protein (CRP) and on atherosclerosis using transgenic humanized models of cardiovascular disease. METHODS After evaluating its anti-oxidative and anti-inflammatory effects in cultured human cells, quercetin (0.1%, w/w in diet) was given to human CRP transgenic mice, a humanized inflammation model, and ApoE*3Leiden transgenic mice, a humanized atherosclerosis model. Sodium salicylate was used as an anti-inflammatory reference. RESULTS In cultured human endothelial cells, quercetin protected against H(2)O(2)-induced lipid peroxidation and reduced the cytokine-induced cell-surface expression of VCAM-1 and E-selectin. Quercetin also reduced the transcriptional activity of NFκB in human hepatocytes. In human CRP transgenic mice (quercetin plasma concentration: 12.9 ± 1.3 μM), quercetin quenched IL1β-induced CRP expression, as did sodium salicylate. In ApoE*3Leiden mice, quercetin (plasma concentration: 19.3 ± 8.3 μM) significantly attenuated atherosclerosis by 40% (sodium salicylate by 86%). Quercetin did not affect atherogenic plasma lipids or lipoproteins but it significantly lowered the circulating inflammatory risk factors SAA and fibrinogen. Combined histological and microarray analysis of aortas revealed that quercetin affected vascular cell proliferation thereby reducing atherosclerotic lesion growth. Quercetin also reduced the gene expression of specific factors implicated in local vascular inflammation including IL-1R, Ccl8, IKK, and STAT3. CONCLUSION Quercetin reduces the expression of human CRP and cardiovascular risk factors (SAA, fibrinogen) in mice in vivo. These systemic effects together with local anti-proliferative and anti-inflammatory effects in the aorta may contribute to the attenuation of atherosclerosis.


PLOS ONE | 2010

Time-Resolved and Tissue-Specific Systems Analysis of the Pathogenesis of Insulin Resistance

Robert Kleemann; Marjan van Erk; Lars Verschuren; Anita M. van den Hoek; Maud Koek; Peter Y. Wielinga; Annie Jie; Linette Pellis; Ivana Bobeldijk-Pastorova; Thomas Kelder; Karin Toet; Suzan Wopereis; Nicole Hp Cnubben; Chris T. Evelo; Ben van Ommen; Teake Kooistra

Background The sequence of events leading to the development of insulin resistance (IR) as well as the underlying pathophysiological mechanisms are incompletely understood. As reductionist approaches have been largely unsuccessful in providing an understanding of the pathogenesis of IR, there is a need for an integrative, time-resolved approach to elucidate the development of the disease. Methodology/Principal Findings Male ApoE3Leiden transgenic mice exhibiting a humanized lipid metabolism were fed a high-fat diet (HFD) for 0, 1, 6, 9, or 12 weeks. Development of IR was monitored in individual mice over time by performing glucose tolerance tests and measuring specific biomarkers in plasma, and hyperinsulinemic-euglycemic clamp analysis to assess IR in a tissue-specific manner. To elucidate the dynamics and tissue-specificity of metabolic and inflammatory processes key to IR development, a time-resolved systems analysis of gene expression and metabolite levels in liver, white adipose tissue (WAT), and muscle was performed. During HFD feeding, the mice became increasingly obese and showed a gradual increase in glucose intolerance. IR became first manifest in liver (week 6) and then in WAT (week 12), while skeletal muscle remained insulin-sensitive. Microarray analysis showed rapid upregulation of carbohydrate (only liver) and lipid metabolism genes (liver, WAT). Metabolomics revealed significant changes in the ratio of saturated to polyunsaturated fatty acids (liver, WAT, plasma) and in the concentrations of glucose, gluconeogenesis and Krebs cycle metabolites, and branched amino acids (liver). HFD evoked an early hepatic inflammatory response which then gradually declined to near baseline. By contrast, inflammation in WAT increased over time, reaching highest values in week 12. In skeletal muscle, carbohydrate metabolism, lipid metabolism, and inflammation was gradually suppressed with HFD. Conclusions/Significance HFD-induced IR is a time- and tissue-dependent process that starts in liver and proceeds in WAT. IR development is paralleled by tissue-specific gene expression changes, metabolic adjustments, changes in lipid composition, and inflammatory responses in liver and WAT involving p65-NFkB and SOCS3. The alterations in skeletal muscle are largely opposite to those in liver and WAT.


PLOS ONE | 2008

Vaccination against GIP for the Treatment of Obesity

Alma Fulurija; Thomas A. Lutz; Katja Sladko; M. Osto; Peter Y. Wielinga; Martin F. Bachmann; Philippe Saudan

Background According to the WHO, more than 1 billion people worldwide are overweight and at risk of developing chronic illnesses, including cardiovascular disease, type 2 diabetes, hypertension and stroke. Current therapies show limited efficacy and are often associated with unpleasant side-effect profiles, hence there is a medical need for new therapeutic interventions in the field of obesity. Gastric inhibitory peptide (GIP, also known as glucose-dependent insulinotropic polypeptide) has recently been postulated to link over-nutrition with obesity. In fact GIP receptor-deficient mice (GIPR−/−) were shown to be completely protected from diet-induced obesity. Thus, disrupting GIP signaling represents a promising novel therapeutic strategy for the treatment of obesity. Methodology/Principal Findings In order to block GIP signaling we chose an active vaccination approach using GIP peptides covalently attached to virus-like particles (VLP-GIP). Vaccination of mice with VLP-GIP induced high titers of specific antibodies and efficiently reduced body weight gain in animals fed a high fat diet. The reduction in body weight gain could be attributed to reduced accumulation of fat. Moreover, increased weight loss was observed in obese mice vaccinated with VLP-GIP. Importantly, despite the incretin action of GIP, VLP-GIP-treated mice did not show signs of glucose intolerance. Conclusions/Significance This study shows that vaccination against GIP was safe and effective. Thus active vaccination may represent a novel, long-lasting treatment for obesity. However further preclinical safety/toxicology studies will be required before the therapeutic concept can be addressed in humans.


Physiology & Behavior | 2010

Central amylin acts as an adiposity signal to control body weight and energy expenditure

Peter Y. Wielinga; Christian Löwenstein; Sabine Muff; Manuela Munz; Stephen C. Woods; Thomas A. Lutz

The pancreatic B-cell hormone amylin has been proposed to be both a satiation signal and an adiposity signal. The effects of peripheral amylin on energy balance are well investigated, but the effects of central amylin are less clear. We determined the effects of low doses of amylin administered into the 3rd cerebral ventricle (i3vt) on food intake, body weight and other indices of energy balance. Amylin (2 pmol/h) significantly lowered body weight compared to saline after 2 weeks of infusion, independent of whether prior body weight was decreased by fasting, increased by voluntary overfeeding or unmanipulated. A bolus injection of amylin (10 pmol, i3vt) increased energy expenditure and body temperature, whereas chronic i3vt amylin infusion had no effect on energy expenditure above that of control rats even though body temperature was increased. Chronic amylin also reduced RQ, implying a preferential oxidation of fat. Overall, the data provide new evidence that amylin is an adiposity signal that acts within the brain, and informing the brain about the status of peripheral energy stores.


Physiology & Behavior | 2007

Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin

M. Osto; Peter Y. Wielinga; B. Alder; N. Walser; Thomas A. Lutz

Amylin is a pancreatic hormone that is considered to be a satiating signal acting on neurons of the area postrema (AP) in the hindbrain. The adiposity signals leptin and insulin act in the hypothalamus to influence feeding. They also enhance the hindbrains responsivity to satiating signals, e.g. cholecystokinin (CCK). The orexigenic hormone ghrelin is thought to use the same hypothalamic pathways as leptin and insulin, with opposite actions on feeding behaviour. In fact, CCK and ghrelin also seem to interact in the control of feeding. Because CCKs anorectic effect depends on endogenous amylin, the aim of this study was therefore to evaluate a possible functional interaction between amylin and these hormones on short-term food intake in rats. The experiments were performed with male Wistar rats. Intracerebroventricular injection (i3vt) of an orexigenic dose of ghrelin (5 ng/5 microl) reduced but did not completely reverse the intraperitoneal amylin (5 microg/kg)-induced inhibition of food intake. In comparison, administration of a sub-threshold dose of ghrelin (3 ng/5 microl) did not affect the anorexigenic action of peripheral amylin. Leptin administered into the third ventricle (i3vt; 3.5 microg/5 microl) and intraperitoneal amylin (5 microg/kg) synergistically reduced food intake in chow-fed rats. I3vt insulin, administered at a sub-threshold dose (0.5 mU/5 microl), significantly enhanced the response to peripheral amylin. These results indicate that the lipostatic signals leptin and insulin may synergize with amylin to reduce food intake. In contrast, under the conditions tested, the orexigenic hormone ghrelin does not seem to influence the feeding response to peripheral amylin.


Physiology & Behavior | 2007

The acute effect of amylin and salmon calcitonin on energy expenditure

Peter Y. Wielinga; Bettina Alder; Thomas A. Lutz

The pancreatic B-cell hormone amylin is known to be involved in the regulation of meal ending satiation and it also shares typical features of adiposity signals. Chronic amylin administration has recently been shown to increase energy expenditure under certain conditions. Here we investigate the acute effect of peripheral administration of amylin or its agonist salmon calcitonin (sCT) on energy expenditure and respiratory quotient (RQ). First, rats were injected with amylin (5 microg/kg IP) or saline just before dark onset. Despite significantly decreased food intake in amylin-treated rats compared to control until 2 h post-injection (p<0.05), amylin did not influence energy expenditure or RQ. Reduced food intake, which reduces energy expenditure, may have confounded a stimulatory effect of amylin on energy expenditure. Therefore, in the second experiment, amylin (1, 5 and 10 microg/kg IP) or saline was injected in the middle of the light phase (t=0 h) without access to food during 3 h post-injection. Amylin had no significant effects on energy expenditure or RQ. In a similar paradigm, the effect of sCT (0.1, 1.0 and 5.0 microg/kg IP) was tested. During food restriction, 5.0 microg/kg sCT significantly stimulated energy expenditure compared to control (p<0.05). Subsequent to refeeding at t=3 h, energy expenditure was decreased compared to control at t=8 h and t=10 h after 5.0 microg/kg sCT, probably due to sCTs strong anorectic action. Thus amylin may prevent the compensatory decrease in energy expenditure normally seen in animals that eat less. The longer acting sCT stimulated energy expenditure in animals without food access.


Journal of Nutrition | 2011

A Dietary Mixture Containing Fish Oil, Resveratrol, Lycopene, Catechins, and Vitamins E and C Reduces Atherosclerosis in Transgenic Mice

Lars Verschuren; Peter Y. Wielinga; Wim van Duyvenvoorde; Samira Tijani; Karin Toet; Ben van Ommen; Teake Kooistra; Robert Kleemann

Chronic inflammation and proatherogenic lipids are important risk factors of cardiovascular disease (CVD). Specific dietary constituents such as polyphenols and fish oils may improve cardiovascular risk factors and may have a beneficial effect on disease outcomes. We hypothesized that the intake of an antiinflammatory dietary mixture (AIDM) containing resveratrol, lycopene, catechin, vitamins E and C, and fish oil would reduce inflammatory risk factors, proatherogenic lipids, and endpoint atherosclerosis. AIDM was evaluated in an inflammation model, male human C-reactive protein (CRP) transgenic mice, and an atherosclerosis model, female ApoE*3Leiden transgenic mice. Two groups of male human-CRP transgenic mice were fed AIDM [0.567% (wt:wt) powder and 0.933% (wt:wt oil)] or placebo for 6 wk. The effects of AIDM on basal and IL-1β–stimulated CRP expression were investigated. AIDM reduced cytokine-induced human CRP and fibrinogen expression in human-CRP transgenic mice. In the atherosclerosis study, 2 groups of female ApoE*3Leiden transgenic mice were fed an atherogenic diet supplemented with AIDM [0.567% (wt:wt) powder and 0.933% (wt:wt oil)] or placebo for 16 wk. AIDM strongly reduced plasma cholesterol, TG, and serum amyloid A concentrations compared with placebo. Importantly, long-term treatment of ApoE*3Leiden mice with AIDM markedly reduced the development of atherosclerosis by 96% compared with placebo. The effect on atherosclerosis was paralleled by a reduced expression of the vascular inflammation markers and adhesion molecules inter-cellular adhesion molecule-1 and E-selectin. Dietary supplementation of AIDM improves lipid and inflammatory risk factors of CVD and strongly reduces atherosclerotic lesion development in female transgenic mice.


International Journal of Obesity | 2016

Surgical removal of inflamed epididymal white adipose tissue attenuates the development of non-alcoholic steatohepatitis in obesity.

Petra Mulder; Martine C. Morrison; Peter Y. Wielinga; W van Duyvenvoorde; Teake Kooistra; Robert Kleemann

Background:Non-alcoholic fatty liver disease (NAFLD) is strongly associated with abdominal obesity. Growing evidence suggests that inflammation in specific depots of white adipose tissue (WAT) has a key role in NAFLD progression, but experimental evidence for a causal role of WAT is lacking.Methods:A time-course study in C57BL/6J mice was performed to establish which WAT depot is most susceptible to develop inflammation during high-fat diet (HFD)-induced obesity. Crown-like structures (CLS) were quantified in epididymal (eWAT), mesenteric (mWAT) and inguinal/subcutaneous (iWAT) WAT. The contribution of inflamed WAT to NAFLD progression was investigated by surgical removal of a selected WAT depot and compared with sham surgery. Plasma markers were analyzed by enzyme-linked immunosorbent assay (cytokines/adipokines) and lipidomics (lipids).Results:In eWAT, CLS were formed already after 12 weeks of HFD, which coincided with maximal adipocyte size and fat depot mass, and preceded establishment of non-alcoholic steatohepatitis (NASH). By contrast, the number of CLS were low in mWAT and iWAT. Removal of inflamed eWAT after 12 weeks (eWATx group), followed by another 12 weeks of HFD feeding, resulted in significantly reduced NASH in eWATx. Inflammatory cell aggregates (−40%; P<0.05) and inflammatory genes (e.g., TNFα, −37%; P<0.05) were attenuated in livers of eWATx mice, whereas steatosis was not affected. Concomitantly, plasma concentrations of circulating proinflammatory mediators, viz. leptin and specific saturated and monounsaturated fatty acids, were also reduced in the eWATx group.Conclusions:Intervention in NAFLD progression by removal of inflamed eWAT attenuates the development of NASH and reduces plasma levels of specific inflammatory mediators (cytokines and lipids). These data support the hypothesis that eWAT is causally involved in the pathogenesis of NASH.


Journal of Hepatology | 2015

Mirtoselect, an anthocyanin-rich bilberry extract, attenuates non-alcoholic steatohepatitis and associated fibrosis in ApoE*3Leiden mice

Martine C. Morrison; Wen Liang; Petra Mulder; Elsbet J. Pieterman; Karin Toet; Peter Heeringa; Peter Y. Wielinga; Teake Kooistra; Robert Kleemann

BACKGROUND & AIMS Anthocyanins may have beneficial effects on lipid metabolism and inflammation and are demonstrated to have hepatoprotective properties in models of restraint-stress- and chemically-induced liver damage. However, their potential to protect against non-alcoholic steatohepatitis (NASH) under conditions relevant for human pathogenesis remains unclear. Therefore, we studied the effects of the standardised anthocyanin-rich extract Mirtoselect on diet-induced NASH in a translational model of disease. METHODS ApoE(∗)3Leiden mice were fed a Western-type cholesterol-containing diet without (HC) or with 0.1% (w/w) Mirtoselect (HCM) for 20weeks to study the effects on diet-induced NASH. RESULTS Mirtoselect attenuated HC-induced hepatic steatosis, as observed by decreased macro- and microvesicular hepatocellular lipid accumulation and reduced hepatic cholesteryl ester content. This anti-steatotic effect was accompanied by local anti-inflammatory effects in liver, as demonstrated by reduced inflammatory cell clusters and reduced neutrophil infiltration in HCM. On a molecular level, HC diet significantly induced hepatic expression of pro-inflammatory genes Tnf, Emr1, Ccl2, Mpo, Cxcl1, and Cxcl2 while this induction was less pronounced or significantly decreased in HCM. A similar quenching effect was observed for HC-induced pro-fibrotic genes, Acta2 and Col1a1 and this anti-fibrotic effect of Mirtoselect was confirmed histologically. Many of the pro-inflammatory and pro-fibrotic parameters positively correlated with intrahepatic free cholesterol levels. Mirtoselect significantly reduced accumulation and crystallisation of intrahepatic free cholesterol, providing a possible mechanism for the observed hepatoprotective effects. CONCLUSIONS Mirtoselect attenuates development of NASH, reducing hepatic lipid accumulation, inflammation and fibrosis, possibly mediated by local anti-inflammatory effects associated with reduced accumulation and crystallisation of intrahepatic free cholesterol.


PLOS ONE | 2011

Beneficial Effects of Alternate Dietary Regimen on Liver Inflammation, Atherosclerosis and Renal Activation

Peter Y. Wielinga; Gopala K. Yakala; Peter Heeringa; Robert Kleemann; Teake Kooistra

Background Alternate day calorie restriction (CR) has been shown to be almost as beneficial as daily CR. The question arises whether this concept is also applicable to alternating dietary composition. Objective To seek evidence that alternating high cholesterol (HC) - cholesterol-free (CON) Western diet can effectively diminish hepatic and renal inflammation and cardiovascular risk factors as compared with daily HC-supplemented Western diet. Design Four groups of ApoE*3Leiden mice, a humanized model for atherosclerosis, were subjected to different feeding treatments for 16 weeks. Mice were fed CON diet; CON diet with 1% w/w cholesterol (HC); alternate (ALT) diet regimen of CON (4 days) and HC (3 days); or CON diet supplemented with 0.43% (w/w) cholesterol (MC), with overall dietary cholesterol intake equal to ALT. Plasma was analyzed for cardiovascular risk factors, aorta for atherosclerotic lesion formation, and liver and kidney for inflammation. Results ALT diet but not MC was almost as effective as daily CON feeding in preventing disease development. Compared to HC, the ALT group showed 62% lower hepatic nuclear factor kappa B (NF-κB) activity (P<0.001), a reduction of the circulating inflammatory markers E-selectin (−20%; P<0.05), vascular cell adhesion molecule 1 (VCAM-1; −15%; P<0.05) and Serum Amyloid A (SAA; −31%; P<0.05), smaller atherosclerotic lesion sizes (−51%; 46497±10791 µm2 vs. 94664±16470 µm2; P<0.05) and diminished renal expression of specific inflammation and activation markers (VCAM-1, −27%; P<0.05; monocyte chemotactic protein-1 (MCP-1); −37%; P<0.01). Conclusion Alternate HC-CON feeding reproduced most of the beneficial effects of daily cholesterol-free diet, including strongly diminished hepatic, vascular and renal activation and inflammation; also atherosclerosis was reduced by half as compared to HC, albeit still higher compared to the CON group.

Collaboration


Dive into the Peter Y. Wielinga's collaboration.

Top Co-Authors

Avatar

Lars Verschuren

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Heeringa

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Gopala K. Yakala

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Thomas Kelder

Netherlands Organisation for Applied Scientific Research

View shared research outputs
Top Co-Authors

Avatar

B. Alder

University of Zurich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Osto

University of Zurich

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Kiliaan

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge