Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petr Bureš is active.

Publication


Featured researches published by Petr Bureš.


Plant Physiology | 2007

Ancestral Chromosomal Blocks Are Triplicated in Brassiceae Species with Varying Chromosome Number and Genome Size

Martin A. Lysak; Kwok Cheung; Michaela Kitschke; Petr Bureš

The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n = 14, 18, 20, 32, and 36. In high-polyploid (n ≥ 30) species Crambe maritima (2n = 60), Crambe cordifolia (2n = 120), and Vella pseudocytisus (2n = 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2–2.5 pg/2C) has been found in Brassiceae species with 2n = 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n = 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships.


Annals of Botany | 2012

Genome size and DNA base composition of geophytes: the mirror of phenology and ecology?

Pavel Veselý; Petr Bureš; Petr Šmarda; Tomáš Pavlíček

BACKGROUND AND AIMS Genome size is known to affect various plant traits such as stomatal size, seed mass, and flower or shoot phenology. However, these associations are not well understood for species with very large genomes, which are laregly represented by geophytic plants. No detailed associations are known between DNA base composition and genome size or species ecology. METHODS Genome sizes and GC contents were measured in 219 geophytes together with tentative morpho-anatomical and ecological traits. KEY RESULTS Increased genome size was associated with earliness of flowering and tendency to grow in humid conditions, and there was a positive correlation between an increase in stomatal size in species with extremely large genomes. Seed mass of geophytes was closely related to their ecology, but not to genomic parameters. Genomic DNA GC content showed a unimodal relationship with genome size but no relationship with species ecology. CONCLUSIONS Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ecological and evolutionary significance of genomic GC content diversity in monocots

Petr Šmarda; Petr Bureš; Lucie Horová; Ilia J. Leitch; Ladislav Mucina; Ettore Pacini; Lubomír Tichý; Vít Grulich; Olga Rotreklová

Significance Our large-scale survey of genomic nucleotide composition across monocots has enabled the first rigorous testing, to our knowledge, of its biological significance in plants. We show that genomic DNA base composition (GC content) is significantly associated with genome size and holocentric chromosomal structure. GC content may also have deep ecological relevance, because changes in GC content may have played a significant role in the evolution of Earth’s biota, especially the rise of grass-dominated biomes during the mid-Tertiary. The discovery of several groups with very unusual GC contents highlights the need for in-depth analysis to uncover the full extent of genomic diversity. Furthermore, our stratified sampling method of distribution data and quantile regression-like logic of phylogenetic analyses may find wider applications in the analysis of spatially heterogeneous data. Genomic DNA base composition (GC content) is predicted to significantly affect genome functioning and species ecology. Although several hypotheses have been put forward to address the biological impact of GC content variation in microbial and vertebrate organisms, the biological significance of GC content diversity in plants remains unclear because of a lack of sufficiently robust genomic data. Using flow cytometry, we report genomic GC contents for 239 species representing 70 of 78 monocot families and compare them with genomic characters, a suite of life history traits and climatic niche data using phylogeny-based statistics. GC content of monocots varied between 33.6% and 48.9%, with several groups exceeding the GC content known for any other vascular plant group, highlighting their unusual genome architecture and organization. GC content showed a quadratic relationship with genome size, with the decreases in GC content in larger genomes possibly being a consequence of the higher biochemical costs of GC base synthesis. Dramatic decreases in GC content were observed in species with holocentric chromosomes, whereas increased GC content was documented in species able to grow in seasonally cold and/or dry climates, possibly indicating an advantage of GC-rich DNA during cell freezing and desiccation. We also show that genomic adaptations associated with changing GC content might have played a significant role in the evolution of the Earth’s contemporary biota, such as the rise of grass-dominated biomes during the mid-Tertiary. One of the major selective advantages of GC-rich DNA is hypothesized to be facilitating more complex gene regulation.


BMC Plant Biology | 2010

Correlated evolution of LTR retrotransposons and genome size in the genus eleocharis

František Zedek; Jakub Šmerda; Petr Šmarda; Petr Bureš

BackgroundTransposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis.ResultsUsing flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species.ConclusionsUsing several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons.


Annals of Botany | 2011

Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies.

Kateřina Ambrožová; Terezie Mandáková; Petr Bureš; Pavel Neumann; Ilia J. Leitch; Andrea Koblížková; Jiří Macas; Martin A. Lysak

BACKGROUND AND AIMS The genus Fritillaria (Liliaceae) comprises species with extremely large genomes (1C = 30 000-127 000 Mb) and a bicontinental distribution. Most North American species (subgenus Liliorhiza) differ from Eurasian Fritillaria species by their distinct phylogenetic position and increased amounts of heterochromatin. This study examined the contribution of major repetitive elements to the genome obesity found in Fritillaria and identified repeats contributing to the heterochromatin arrays in Liliorhiza species. METHODS Two Fritillaria species of similar genome size were selected for detailed analysis, one from each phylogeographical clade: F. affinis (1C = 45·6 pg, North America) and F. imperialis (1C = 43·0 pg, Eurasia). Fosmid libraries were constructed from their genomic DNAs and used for identification, sequence characterization, quantification and chromosome localization of clones containing highly repeated sequences. KEY RESULTS AND CONCLUSIONS Repeats corresponding to 6·7 and 4·7 % of the F. affinis and F. imperialis genome, respectively, were identified. Chromoviruses and the Tat lineage of Ty3/gypsy group long terminal repeat retrotransposons were identified as the predominant components of the highly repeated fractions in the F. affinis and F. imperialis genomes, respectively. In addition, a heterogeneous, extremely AT-rich satellite repeat was isolated from F. affinis. The FriSAT1 repeat localized in heterochromatic bands makes up approx. 26 % of the F. affinis genome and substantial genomic fractions in several other Liliorhiza species. However, no evidence of a relationship between heterochromatin content and genome size variation was observed. Also, this study was unable to reveal any predominant repeats which tracked the increasing/decreasing trends of genome size evolution in Fritillaria. Instead, the giant Fritillaria genomes seem to be composed of many diversified families of transposable elements. We hypothesize that the genome obesity may be partly determined by the failure of removal mechanisms to counterbalance effectively the retrotransposon amplification.


New Phytologist | 2013

Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long‐term grassland fertilization experiment

Petr Šmarda; Michal Hejcman; Alexandra Březinová; Lucie Horová; Helena Steigerová; František Zedek; Petr Bureš; Pavla Hejcmanová; Juergen Schellberg

Polyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested. We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogeny-based statistics. The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation. Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation.


Annals of Botany | 2013

Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition

Ivana Lipnerová; Petr Bureš; Lucie Horová; Petr Šmarda

BACKGROUND AND AIMS The genus Carex exhibits karyological peculiarities related to holocentrism, specifically extremely broad and almost continual variation in chromosome number. However, the effect of these peculiarities on the evolution of the genome (genome size, base composition) remains unknown. While in monocentrics, determining the arithmetic relationship between the chromosome numbers of related species is usually sufficient for the detection of particular modes of karyotype evolution (i.e. polyploidy and dysploidy), in holocentrics where chromosomal fission and fusion occur such detection requires knowledge of the DNA content. METHODS The genome size and GC content were estimated in 157 taxa using flow cytometry. The exact chromosome numbers were known for 96 measured samples and were taken from the available literature for other taxa. All relationships were tested in a phylogenetic framework using the ITS tree of 105 species. KEY RESULTS The 1C genome size varied between 0·24 and 1·64 pg in Carex secalina and C. cuspidata, respectively. The genomic GC content varied from 34·8 % to 40·6 % from C. secalina to C. firma. Both genomic parameters were positively correlated. Seven polyploid and two potentially polyploid taxa were detected in the core Carex clade. A strong negative correlation between genome size and chromosome number was documented in non-polyploid taxa. Non-polyploid taxa of the core Carex clade exhibited a higher rate of genome-size evolution compared with the Vignea clade. Three dioecious taxa exhibited larger genomes, larger chromosomes, and a higher GC content than their hermaphrodite relatives. CONCLUSIONS Genomes of Carex are relatively small and very GC-poor compared with other angiosperms. We conclude that the evolution of genome and karyotype in Carex is promoted by frequent chromosomal fissions/fusions, rare polyploidy and common repetitive DNA proliferation/removal.


Annals of Botany | 2008

Intrapopulation Genome Size Dynamics in Festuca pallens

Petr Šmarda; Petr Bureš; Lucie Horová; Olga Rotreklová

BACKGROUND AND AIMS It is well known that genome size differs among species. However, information on the variation and dynamics of genome size in wild populations and on the early phase of genome size divergence between taxa is currently lacking. Genome size dynamics, heritability and phenotype effects are analysed here in a wild population of Festuca pallens (Poaceae). METHODS Genome size was measured using flow cytometry with DAPI dye in 562 seedlings from 17 maternal plants varying in genome size. The repeatability of genome size measurements was verified at different seasons through the use of different standards and with propidium iodide dye; the range of variation observed was tested via analysis of double-peaks. Additionally, chromosome counts were made in selected seedlings. KEY RESULTS AND CONCLUSIONS Analysis of double-peaks showed that genome size varied up to 1.188-fold within all 562 seedlings, 1.119-fold within the progeny of a single maternal plant and 1.117-fold in seedlings from grains of a single inflorescence. Generally, genome sizes of seedlings and their mothers were highly correlated. However, in maternal plants with both larger and smaller genomes, genome sizes of seedlings were shifted towards the population median. This was probably due to the frequency of available paternal genomes (pollen grains) in the population. There was a stabilizing selection on genome size during the development of seedlings into adults, which may be important for stabilizing genome size within species. Furthermore, a positive correlation was found between genome size and the development rate of seedlings. A larger genome may therefore provide a competitive advantage, perhaps explaining the higher proportion of plants with larger genomes in the population studied. The reason for the observed variation may be the recent induction of genome size variation, e.g. by activity of retrotransposons, which may be preserved in the long term by the segregation of homeologous chromosomes of different sizes during gametogenesis.


New Phytologist | 2014

Genome size and genomic GC content evolution in the miniature genome‐sized family Lentibulariaceae

Adam Veleba; Petr Bureš; Lubomír Adamec; Petr Šmarda; Ivana Lipnerová; Lucie Horová

• Lentibulariaceae contains species with the smallest genome size in tracheophytes, yet data are available only for 8% of its species. This prevents understanding of the history of miniaturization events and their possible reasons. Nothing is known about the variation of genomic DNA base composition. • Genome size and genomic GC content were analyzed with flow cytometry in 119 Lentibulariaceae species. The evolution of both parameters and their correspondence with several ecological traits was tested by sequence-based phylogeny. • Genome size ranged from 1C=73 to 1C=1471 Mbp, with 19 species found to be smaller than Arabidopsis. Miniaturizations have a long history in Utricularia; they also accompany the evolution of Genlisea and two species of Pinguicula. The absence of correlation between genomic parameters and ecological variables suggests that the driving forces of miniaturization are of intrinsic nature. Genome size dynamics associates with extreme variation of GC contents (34.0%–45.1%), being the highest among tracheophyte families. The extremely low GC contents, however, must clearly have evolved with contributions from processes other than sole DNA removal. • The extreme dynamics of Lentibulariaceae genomes provides a unique opportunity for studying genome miniaturization and GC content variation. Hopefully, our study will facilitate the selection of proper model species.


New Phytologist | 2012

Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability

Petr Šmarda; Petr Bureš; Jakub Šmerda; Lucie Horová

• Knowledge of the phylogenetic pattern and biological relevance of the base composition of large eukaryotic genomes (including those of plants) is poor. With the use of flow cytometry (FCM), the amount of available data on the guanine + cytosine (GC) content of plants has nearly doubled in the last decade. However, skepticism exists concerning the reliability of the method because of uncertainty in some input parameters. • Here, we tested the reliability of FCM for estimating GC content by comparison with the biochemical method of DNA temperature melting analysis (TMA). We conducted measurements in 14 plant species with a maximum currently known GC content range (33.6-47.5% as measured by FCM). We also compared the estimations of the GC content by FCM with genomic sequences in 11 Oryza species. • FCM and TMA data exhibited a high degree of correspondence which remained stable over the relatively wide range of binding lengths (3.39-4.09) assumed for the base-specific dye used. A high correlation was also observed between FCM results and the sequence data in Oryza, although the latter GC contents were consistently lower. • Reliable estimates of the genomic base composition in plants by FCM are comparable with estimates obtained using other methods, and so wider application of FCM in future plant genomic research, although it would pose a challenge, would be supported by these findings.

Collaboration


Dive into the Petr Bureš's collaboration.

Researchain Logo
Decentralizing Knowledge