Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petr Dusek is active.

Publication


Featured researches published by Petr Dusek.


Neurobiology of Disease | 2012

Iron dysregulation in movement disorders

Petr Dusek; Joseph Jankovic; Weidong Le

Iron is an essential element necessary for energy production, DNA and neurotransmitter synthesis, myelination and phospholipid metabolism. Neurodegeneration with brain iron accumulation (NBIA) involves several genetic disorders, two of which, aceruloplasminemia and neuroferritinopathy, are caused by mutations in genes directly involved in iron metabolic pathway, and others, such as pantothenate-kinase 2, phospholipase-A2 and fatty acid 2-hydroxylase associated neurodegeneration, are caused by mutations in genes coding for proteins involved in phospholipid metabolism. Phospholipids are major constituents of myelin and iron accumulation has been linked to myelin derangements. Another group of NBIAs is caused by mutations in lysosomal enzymes or transporters such as ATP13A2, mucolipin-1 and possibly also β-galactosidase and α-fucosidase. Increased cellular iron uptake in these diseases may be caused by impaired recycling of iron which normally involves lysosomes. Abnormal iron utilization by mitochondria, as has been proposed in Friedreichs ataxia, is another possible mechanism of iron accumulation. Other, more common degenerative movement disorders, such as Parkinsons disease, Huntingtons disease, multiple system atrophy and progressive supranuclear palsy also exhibit increased brain iron content. Finally, brain iron deficiency has been implicated in restless legs syndrome. This review provides an update on recent findings related to genetics, pathogenic mechanisms, diagnosis, and treatment of movement disorders associated with dysregulation of brain iron. We also propose a new classification of NBIAs.


Journal of Trace Elements in Medicine and Biology | 2015

The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases.

Petr Dusek; Per M. Roos; Tomasz Litwin; Susanne A. Schneider; Trond Peder Flaten; Jan Aaseth

Impaired cellular homeostasis of metals, particularly of Cu, Fe and Mn may trigger neurodegeneration through various mechanisms, notably induction of oxidative stress, promotion of α-synuclein aggregation and fibril formation, activation of microglial cells leading to inflammation and impaired production of metalloproteins. In this article we review available studies concerning Fe, Cu and Mn in Parkinsons disease and Wilsons disease. In Parkinsons disease local dysregulation of iron metabolism in the substantia nigra (SN) seems to be related to neurodegeneration with an increase in SN iron concentration, accompanied by decreased SN Cu and ceruloplasmin concentrations and increased free Cu concentrations and decreased ferroxidase activity in the cerebrospinal fluid. Available data in Wilsons disease suggest that substantial increases in CNS Cu concentrations persist for a long time during chelating treatment and that local accumulation of Fe in certain brain nuclei may occur during the course of the disease. Consequences for chelating treatment strategies are discussed.


Current Neuropharmacology | 2013

Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA)

Susanne A. Schneider; Petr Dusek; John Hardy; Ana Westenberger; Joseph Jankovic; Kailash P. Bhatia

Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic. Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.


Clinical Neurophysiology | 2006

Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson's disease

Robert Jech; Evžen Růžička; Dušan Urgošík; Tereza Serranová; Markéta Volfová; Olga Nováková; Jan Roth; Petr Dusek; Petr Mečíř

OBJECTIVE We studied changes of the EEG spectral power induced by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinsons disease (PD). Also analyzed were changes of visual evoked potentials (VEP) with DBS on and off. METHODS Eleven patients with advanced PD treated with bilateral DBS STN were examined after an overnight withdrawal of L-DOPA and 2 h after switching off the neurostimulators. All underwent clinical examination followed by resting EEG and VEP recordings, a procedure repeated after DBS STN was switched on. RESULTS With DBS switched on, the dominant EEG frequency increased from 9.44+/-1.3 to 9.71+/-1.3 Hz (P<0.01) while its relative spectral power dropped by 11% on average (P<0.05). Switching on the neurostimulators caused a decrease in the N70/P100 amplitude of the VEP (P<0.01), which inversely correlated with the intensity of DBS (black-and-white pattern: P<0.01; color pattern: P<0.05). CONCLUSIONS Despite artifacts generated by neurostimulators, the VEP and resting EEG were suitable for the detection of effects related to DBS STN. The acceleration of dominant frequency in the alpha band may be evidence of DBS STN influence on speeding up of intracortical oscillations. The spectral power decrease, seen mainly in the fronto-central region, might reflect a desynchronization in the premotor and motor circuits, though no movement was executed. Similarly, desynchronization of the cortical activity recorded posteriorly may by responsible for the VEP amplitude decrease implying DBS STN-related influence even on the visual system. SIGNIFICANCE Changes in idling EEG activity observed diffusely over scalp together with involvement of the VEP suggest that the effects of DBS STN reach far beyond the motor system influencing the basic mechanisms of rhythmic cortical oscillations.


Neuroreport | 2005

Cumulative blood oxygenation-level-dependent signal changes support the 'time accumulator' hypothesis

Robert Jech; Petr Dusek; Jiri Wackermann; Josef Vymazal

We studied time-related changes in the blood oxygenation-level-dependent signal during a time reproduction task. Nine healthy study participants retained and reproduced stimuli of varying durations in the multi-second range. During the encoding phase of the task, activity in the left dorsolateral prefrontal cortex inversely correlated with the interval duration, while an adjacent region in the dorsolateral prefrontal cortex showed positive correlation with duration in the reproduction phase. Cumulative signal increase during the reproduction phase, as found in the primary motor and supplementary motor areas, may also reflect the time-sensitive behavior. Signal accumulation in the right caudate nucleus is in agreement with presumed role of basal ganglia in time perception. These results support the ‘time accumulator’ hypothesis.


Journal of Trace Elements in Medicine and Biology | 2016

Iron chelation in the treatment of neurodegenerative diseases

Petr Dusek; Susanne A. Schneider; Jan Aaseth

Disturbance of cerebral iron regulation is almost universal in neurodegenerative disorders. There is a growing body of evidence that increased iron deposits may contribute to degenerative changes. Thus, the effect of iron chelation therapy has been investigated in many neurological disorders including rare genetic syndromes with neurodegeneration with brain iron accumulation as well as common sporadic disorders such as Parkinsons disease, Alzheimers disease, and multiple sclerosis. This review summarizes recent advances in understanding the role of iron in the etiology of neurodegeneration. Outcomes of studies investigating the effect of iron chelation therapy in neurodegenerative disorders are systematically presented in tables. Iron chelators, particularly the blood brain barrier-crossing compound deferiprone, are capable of decreasing cerebral iron in areas with abnormally high concentrations as documented by MRI. Yet, currently, there is no compelling evidence of the clinical effect of iron removal therapy on any neurological disorder. However, several studies indicate that it may prevent or slow down disease progression of several disorders such as aceruloplasminemia, pantothenate kinase-associated neurodegeneration or Parkinsons disease.


Neurologic Clinics | 2015

Wilson Disease and Other Neurodegenerations with Metal Accumulations

Petr Dusek; Tomasz Litwin; Anna Członkowska

Trace elements, such as iron, copper, manganese, and calcium, which are essential constituents necessary for cellular homeostasis, become toxic when present in excess quantities. In this article, we describe disorders arising from endogenous dysregulation of metal homeostasis leading to their tissue accumulation. Although subgroups of these diseases lead to regional brain metal accumulation, mostly in globus pallidus, which is susceptible to accumulate divalent metal ions, other subgroups cause systemic metal accumulation affecting the whole brain, liver, and other parenchymal organs. The latter group comprises Wilson disease, manganese transporter deficiency, and aceruloplasminemia and responds favorably to chelation treatment.


Movement Disorders | 2011

Subthalamic Nucleus Stimulation Affects Incentive Salience Attribution in Parkinson's Disease

Tereza Serranová; Robert Jech; Petr Dusek; Tomáš Sieger; Filip Růžička; Dušan Urgošík; Evžen Růžička

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can induce nonmotor side effects such as behavioral and mood disturbances or body weight gain in Parkinsons disease (PD) patients. We hypothesized that some of these problems could be related to an altered attribution of incentive salience (ie, emotional relevance) to rewarding and aversive stimuli. Twenty PD patients (all men; mean age ± SD, 58.3 ± 6 years) in bilateral STN DBS switched ON and OFF conditions and 18 matched controls rated pictures selected from the International Affective Picture System according to emotional valence (unpleasantness/pleasantness) and arousal on 2 independent visual scales ranging from 1 to 9. Eighty‐four pictures depicting primary rewarding (erotica and food) and aversive fearful (victims and threat) and neutral stimuli were selected for this study. In the STN DBS ON condition, the PD patients attributed lower valence scores to the aversive pictures compared with the OFF condition (P < .01) and compared with controls (P < .01). The difference between the OFF condition and controls was less pronounced (P < .05). Furthermore, postoperative weight gain correlated with arousal ratings from the food pictures in the STN DBS ON condition (P < .05 compensated for OFF condition). Our results suggest that STN DBS increases activation of the aversive motivational system so that more relevance is attributed to aversive fearful stimuli. In addition, STN DBS–related sensitivity to food reward stimuli cues might drive DBS‐treated patients to higher food intake and subsequent weight gain.


PLOS ONE | 2012

The Subthalamic Microlesion Story in Parkinson's Disease: Electrode Insertion-Related Motor Improvement with Relative Cortico-Subcortical Hypoactivation in fMRI

Robert Jech; Karsten Mueller; Dušan Urgošík; Tomáš Sieger; Stefan Holiga; Filip Růžička; Petr Dusek; Petra Havránková; Josef Vymazal; Evžen Růžička

Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinsons disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinsons Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.


Current Opinion in Neurology | 2012

Neurodegeneration with brain iron accumulation.

Petr Dusek; Susanne A. Schneider

PURPOSE OF REVIEW Recent years have witnessed the discoveries of several genes causing neurodegeneration with brain iron accumulation (NBIA) and subsequently their novel classification scheme was suggested. The first results of treatments with modern chelating drugs are also being published. RECENT FINDINGS Most recently, mutations in the c19orf12 gene encoding a mitochondrial protein of unknown function were identified in patients suffering from hitherto unknown NBIA presenting with a clinical phenotype similar to pantothenate kinase-associated neurodegeneration (PKAN) but with a slightly later onset. A case study has shown that mutations in the fatty-acid 2-hydroxylase gene may lead to various phenotypes combining the features of leukodystrophy and NBIA, supporting that abnormal metabolism of myelin and iron accumulation may have a common cause. A phase-II pilot study did not find any clinical improvement after chelating treatment in a group of PKAN patients. However, benefits of chelating treatment have been observed in individual patients with PKAN and idiopathic NBIA in another study. SUMMARY This review gives an outline of the clinical presentations of recently discovered NBIA syndromes and summarizes the clues to their differential diagnosis. While chelating treatment still remains experimental, advances have been made regarding the indications of deep brain stimulation in symptomatic treatment of NBIAs manifesting with generalized dystonia.

Collaboration


Dive into the Petr Dusek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thoralf Niendorf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Friedemann Paul

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Tomáš Sieger

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Dušan Urgošík

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Evzen Ruzicka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Tereza Serranová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjeev Chawla

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge