Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra A. Tsuji is active.

Publication


Featured researches published by Petra A. Tsuji.


Trends in Biochemical Sciences | 2014

Selenium and selenocysteine: roles in cancer, health, and development

Dolph L. Hatfield; Petra A. Tsuji; Bradley A. Carlson; Vadim N. Gladyshev

The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid-1990s selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace, elucidating its many roles in health, development, and in cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions.


Annual Review of Nutrition | 2012

Selenoproteins and Cancer Prevention

Cindy D. Davis; Petra A. Tsuji; John A. Milner

The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.


Cancer Prevention Research | 2010

Deficiency in the 15-kDa Selenoprotein Inhibits Tumorigenicity and Metastasis of Colon Cancer Cells

Robert Irons; Petra A. Tsuji; Bradley A. Carlson; Ping Ouyang; Min-Hyuk Yoo; Xue-Ming Xu; Dolph L. Hatfield; Vadim N. Gladyshev; Cindy D. Davis

Selenium has cancer-preventive activity that is mediated, in part, through selenoproteins. The role of the 15-kDa selenoprotein (Sep15) in colon cancer was assessed by preparing and using mouse colon CT26 cells stably transfected with short hairpin RNA constructs targeting Sep15. Metabolic 75Se labeling and Northern and Western blot analyses revealed that >90% of Sep15 was downregulated. Growth of the resulting Sep15-deficient CT26 cells was reduced (P < 0.01), and cells formed significantly (P < 0.001) fewer colonies in soft agar compared with control CT26 cells. Whereas most (14 of 15) BALB/c mice injected with control cells developed tumors, few (3 of 30) mice injected with Sep15-deficient cells developed tumors (P < 0.0001). The ability to form pulmonary metastases had similar results. Mice injected with the plasmid-transfected control cells had >250 lung metastases per mouse; however, mice injected with cells with downregulation of Sep15 only had 7.8 ± 5.4 metastases. To investigate molecular targets affected by Sep15 status, gene expression patterns between control and knockdown CT26 cells were compared. Ingenuity Pathways Analysis was used to analyze the 1,045 genes that were significantly (P < 0.001) affected by Sep15 deficiency. The highest-scored biological functions were cancer and cellular growth and proliferation. Consistent with these observations, subsequent analyses revealed a G2-M cell cycle arrest in cells with targeted downregulation of Sep15. In contrast to CT26 cells, Sep15-targeted downregulation in Lewis lung carcinoma (LLC1) cells did not affect anchorage-dependent or anchorage-independent cell growth. These data suggest tissue specificity in the cancer-protective effects of Sep15 downregulation, which are mediated, at least in part, by influencing the cell cycle. Cancer Prev Res; 3(5); 630–9. ©2010 AACR.


Journal of Biological Chemistry | 2011

Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice.

Marina V. Kasaikina; Dmitri E. Fomenko; Vyacheslav M. Labunskyy; Salil A. Lachke; Wenya Qiu; Juliet A. Moncaster; Jie Zhang; Mark Wojnarowicz; Sathish Kumar Natarajan; Mikalai Malinouski; Ulrich Schweizer; Petra A. Tsuji; Bradley A. Carlson; Richard L. Maas; Marjorie F. Lou; Lee E. Goldstein; Dolph L. Hatfield; Vadim N. Gladyshev

The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency.


Journal of Biological Chemistry | 2016

Selenoprotein Gene Nomenclature

Brigelius Flohé Regina; Vadim N. Gladyshev; Elias S.J. Arnér; Marla J. Berry; Elspeth A. Bruford; Raymond F. Burk; Bradley A. Carlson; Sergi Castellano; Laurent Chavatte; Marcus Conrad; Paul R. Copeland; Alan M. Diamond; Donna M. Driscoll; A. Ferreiro; Leopold Flohé; Fiona R. Green; Roderic Guigó; Diane E. Handy; Dolph L. Hatfield; John E. Hesketh; Peter R. Hoffmann; Arne Holmgren; Robert J. Hondal; Michael T. Howard; Kaixun Huang; Hwa Young Kim; Ick Young Kim; Josef Köhrle; Alain Krol; Gregory V. Kryukov

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Redox biology | 2016

Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration

Bradley A. Carlson; Ryuta Tobe; Elena Yefremova; Petra A. Tsuji; Victoria Hoffmann; Ulrich Schweizer; Vadim N. Gladyshev; Dolph L. Hatfield; Marcus Conrad

The selenoenzyme glutathione peroxidase 4 (Gpx4) is an essential mammalian glutathione peroxidase, which protects cells against detrimental lipid peroxidation and governs a novel form of regulated necrotic cell death, called ferroptosis. To study the relevance of Gpx4 and of another vitally important selenoprotein, cytosolic thioredoxin reductase (Txnrd1), for liver function, mice with conditional deletion of Gpx4 in hepatocytes were studied, along with those lacking Txnrd1 and selenocysteine (Sec) tRNA (Trsp) in hepatocytes. Unlike Txnrd1- and Trsp-deficient mice, Gpx4−/− mice died shortly after birth and presented extensive hepatocyte degeneration. Similar to Txnrd1-deficient livers, Gpx4−/− livers manifested upregulation of nuclear factor (erythroid-derived)-like 2 (Nrf2) response genes. Remarkably, Gpx4−/− pups born from mothers fed a vitamin E-enriched diet survived, yet this protection was reversible as subsequent vitamin E deprivation caused death of Gpx4-deficient mice ~4 weeks thereafter. Abrogation of selenoprotein expression in Gpx4−/− mice did not result in viable mice, indicating that the combined deficiency aggravated the loss of Gpx4 in liver. By contrast, combined Trsp/Txnrd1-deficient mice were born, but had significantly shorter lifespans than either single knockout, suggesting that Txnrd1 plays an important role in supporting liver function of mice lacking Trsp. In sum our study demonstrates that the ferroptosis regulator Gpx4 is critical for hepatocyte survival and proper liver function, and that vitamin E can compensate for its loss by protecting cells against deleterious lipid peroxidation.


Molecules | 2009

Mouse Models Targeting Selenocysteine tRNA Expression for Elucidating the Role of Selenoproteins in Health and Development

Bradley A. Carlson; Min-Hyuk Yoo; Petra A. Tsuji; Vadim N. Gladyshev; Dolph L. Hatfield

Selenium (Se) deficiency has been known for many years to be associated with disease, impaired growth and a variety of other metabolic disorders in mammals. Only recently has the major role that Se-containing proteins, designated selenoproteins, play in many aspects of health and development begun to emerge. Se is incorporated into protein by way of the Se-containing amino acid, selenocysteine (Sec). The synthesis of selenoproteins is dependent on Sec tRNA for insertion of Sec, the 21st amino acid in the genetic code, into protein. We have taken advantage of this dependency to modulate the expression of Sec tRNA that in turn modulates the expression of selenoproteins by generating transgenic, conditional knockout, transgenic/standard knockout and transgenic/conditional knockout mouse models, all of which involve the Sec tRNA gene, to elucidate the intracellular roles of this protein class.


PLOS ONE | 2012

Knockout of the 15 kDa Selenoprotein Protects against Chemically-Induced Aberrant Crypt Formation in Mice

Petra A. Tsuji; Bradley A. Carlson; Salvador Naranjo-Suarez; Min Hyuk Yoo; Xue Ming Xu; Dmitri E. Fomenko; Vadim N. Gladyshev; Dolph L. Hatfield; Cindy D. Davis

Evidence suggests that selenium has cancer preventive properties that are largely mediated through selenoproteins. Our previous observations demonstrated that targeted down-regulation of the 15 kDa selenoprotein (Sep15) in murine colon cancer cells resulted in the reversal of the cancer phenotype. The present study investigated the effect of Sep15 knockout in mice using a chemically-induced colon cancer model. Homozygous Sep15 knockout mice, and wild type littermate controls were given four weekly subcutaneous injections of azoxymethane (10 mg/kg). Sep15 knockout mice developed significantly (p<0.001) fewer aberrant crypt foci than controls demonstrating that loss of Sep15 protects against aberrant crypt foci formation. Dietary selenium above adequate levels did not significantly affect aberrant crypt foci formation in Sep15 knockout mice. To investigate molecular targets affected by loss of Sep15, gene expression patterns in colonic mucosal cells of knockout and wild type mice were examined using microarray analysis. Subsequent analyses verified that guanylate binding protein-1 (GBP-1) mRNA and protein expression were strongly upregulated in Sep15 knockout mice. GBP-1, which is expressed in response to interferon-γ, is considered to be an activation marker during inflammatory diseases, and up-regulation of GBP-1 in humans has been associated with a highly significant, increased five-year survival rate in colorectal cancer patients. In agreement with these studies, we observed a higher level of interferon-γ in plasma of Sep15 knockout mice. Overall, our results demonstrate for the first time, that Sep15 knockout mice are protected against chemically-induced aberrant crypt foci formation and that Sep15 appears to have oncogenic properties in colon carcinogenesis in vivo.


Nutrients | 2011

Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

Petra A. Tsuji; Salvador Naranjo-Suarez; Bradley A. Carlson; Ryuta Tobe; Min-Hyuk Yoo; Cindy D. Davis

Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins). Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15) may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further.


Nutrition and Cancer | 2013

Structure-Activity Analysis of Flavonoids: Direct and Indirect Antioxidant, and Antiinflammatory Potencies and Toxicities

Petra A. Tsuji; Katherine K. Stephenson; Kristina L. Wade; Hua Liu; Jed W. Fahey

Flavonoids are secondary plant products that are well represented in healthy diets because of ingestion of fruit, vegetables, herbs, and teas. Increased consumption is correlated with decreased risks of cardiovascular disease, cancer, and other chronic diseases. Certain flavonoids confer direct antioxidant protection to cells, others induce enzymes that protect cells against oxidative and other insults (“indirect antioxidants”), and others appear to be protective by both mechanisms. Hydroxylated flavones manifest substantial direct antioxidant activity but do not effectively induce cytoprotective enzymes. Methoxylated flavones that potently induce cytoprotective enzymes were evaluated to elucidate the structural prerequisites for effective chemoprotective agents: protecting healthy cells with minimal collateral toxicity. Flavones and flavanones methoxylated at the 5-position of the A-ring were among the most potent inducers of the cytoprotective NAD(P)H:quinone-oxidoreductase 1 (NQO1) in 3 different cell lines. Other flavones were equally potent inducers, but more toxic. Flavanones contain no Michael reaction center, yet some are potent inducers of NQO1, have low cytotoxicity, and inhibit LPS-stimulated iNOS activity, which suggests a redox mechanism of action rather than the Keap1/Nrf2/ARE mechanism by which so many of the classic inducers operate. Evaluation in vivo will reveal whether differential protective advantages support their possible evaluation in a cancer prevention setting.

Collaboration


Dive into the Petra A. Tsuji's collaboration.

Top Co-Authors

Avatar

Bradley A. Carlson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dolph L. Hatfield

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vadim N. Gladyshev

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ryuta Tobe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cindy D. Davis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Min-Hyuk Yoo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byeong Jae Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Xue-Ming Xu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge