Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Beli is active.

Publication


Featured researches published by Petra Beli.


Molecular & Cellular Proteomics | 2011

A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles

Sebastian A. Wagner; Petra Beli; Brian T. Weinert; Michael L. Nielsen; Juergen Cox; Matthias Mann; Chunaram Choudhary

Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-step immunoenrichment of ubiquitylated peptides with peptide fractionation and high-resolution mass spectrometry to investigate endogenous ubiquitylation sites. We precisely map 11,054 endogenous putative ubiquitylation sites (diglycine-modified lysines) on 4,273 human proteins. The presented data set covers 67% of the known ubiquitylation sites and contains 10,254 novel sites on proteins with diverse cellular functions including cell signaling, receptor endocytosis, DNA replication, DNA damage repair, and cell cycle progression. Our method enables site-specific quantification of ubiquitylation in response to cellular perturbations and is applicable to any cell type or tissue. Global quantification of ubiquitylation in cells treated with the proteasome inhibitor MG-132 discovers sites that are involved in proteasomal degradation, and suggests a nonproteasomal function for almost half of all sites. Surprisingly, ubiquitylation of about 15% of sites decreased more than twofold within four hours of MG-132 treatment, showing that inhibition of proteasomal function can dramatically reduce ubiquitylation on many sites with non-proteasomal functions. Comparison of ubiquitylation sites with acetylation sites reveals an extensive overlap between the lysine residues targeted by these two modifications. However, the crosstalk between these two post-translational modifications is significantly less frequent on sites that show increased ubiquitylation upon proteasome inhibition. Taken together, we report the largest site-specific ubiquitylation dataset in human cells, and for the first time demonstrate proteome-wide, site-specific quantification of endogenous putative ubiquitylation sites.


Molecular Cell | 2013

Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.

Brian T. Weinert; Vytautas Iesmantavicius; Sebastian A. Wagner; Christian Schölz; Bertil Gummesson; Petra Beli; Thomas Nyström; Chunaram Choudhary

Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.


Molecular Cell | 2012

Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

Petra Beli; Natalia Lukashchuk; Sebastian A. Wagner; Brian T. Weinert; J. Olsen; Linda Baskcomb; Matthias Mann; Chunaram Choudhary

The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and proteome. We show that phosphorylation-dependent signaling networks are regulated more strongly compared to acetylation. Among the phosphorylated proteins identified are many putative substrates of DNA-PK, ATM, and ATR kinases, but a majority of phosphorylated proteins do not share the ATM/ATR/DNA-PK target consensus motif, suggesting an important role of downstream kinases in amplifying DDR signals. We show that the splicing-regulator phosphatase PPM1G is recruited to sites of DNA damage, while the splicing-associated protein THRAP3 is excluded from these regions. Moreover, THRAP3 depletion causes cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria

Benjamin Richter; Danielle A. Sliter; Lina Herhaus; Alexandra Stolz; Chunxin Wang; Petra Beli; Gabriele Zaffagnini; Philipp Wild; Sascha Martens; Sebastian A. Wagner; Richard J. Youle; Ivan Dikic

Significance Selective autophagy of damaged mitochondria (mitophagy) requires protein kinases PINK1 and TBK1, ubiquitin ligase Parkin, and autophagy receptors such as OPTN, driving ubiquitin-labeled mitochondria into autophagosomes. Because all proteins have been genetically linked to either Parkinson’s disease (PINK1 and Parkin) or amyotrophic lateral sclerosis and frontotemporal lobar degeneration (TBK1 and OPTN), it is of great interest to understand their physiological functions. By utilizing quantitative proteomics we show that TBK1 phosphorylates four receptors on several autophagy-relevant sites. Constitutive interaction of TBK1 with OPTN and the ability of OPTN to bind to ubiquitin chains are essential for TBK1 recruitment and activation on mitochondria. TBK1-mediated phosphorylation of OPTN creates a signal amplification loop through combining recruitment and retention of OPTN/TBK1 on ubiquitinated mitochondria. Selective autophagy of damaged mitochondria requires autophagy receptors optineurin (OPTN), NDP52 (CALCOCO2), TAX1BP1, and p62 (SQSTM1) linking ubiquitinated cargo to autophagic membranes. By using quantitative proteomics, we show that Tank-binding kinase 1 (TBK1) phosphorylates all four receptors on several autophagy-relevant sites, including the ubiquitin- and LC3-binding domains of OPTN and p62/SQSTM1 as well as the SKICH domains of NDP52 and TAX1BP1. Constitutive interaction of TBK1 with OPTN and the ability of OPTN to bind to ubiquitin chains are essential for TBK1 recruitment and kinase activation on mitochondria. TBK1 in turn phosphorylates OPTN’s UBAN domain at S473, thereby expanding the binding capacity of OPTN to diverse Ub chains. In combination with phosphorylation of S177 and S513, this posttranslational modification promotes recruitment and retention of OPTN/TBK1 on ubiquitinated, damaged mitochondria. Moreover, phosphorylation of OPTN on S473 enables binding to pS65 Ub chains and is also implicated in PINK1-driven and Parkin-independent mitophagy. Thus, TBK1-mediated phosphorylation of autophagy receptors creates a signal amplification loop operating in selective autophagy of damaged mitochondria.


Molecular & Cellular Proteomics | 2012

Proteomic Analyses Reveal Divergent Ubiquitylation Site Patterns in Murine Tissues

Sebastian A. Wagner; Petra Beli; Brian T. Weinert; Christian Schölz; Christian D. Kelstrup; Clifford Young; Michael L. Nielsen; J. Olsen; Cord Brakebusch; Chunaram Choudhary

Posttranslational modifications of proteins increase the complexity of the cellular proteome and enable rapid regulation of protein functions in response to environmental changes. Protein ubiquitylation is a central regulatory posttranslational modification that controls numerous biological processes including proteasomal degradation of proteins, DNA damage repair and innate immune responses. Here we combine high-resolution mass spectrometry with single-step immunoenrichment of di-glycine modified peptides for mapping of endogenous putative ubiquitylation sites in murine tissues. We identify more than 20,000 unique ubiquitylation sites on proteins involved in diverse biological processes. Our data reveals that ubiquitylation regulates core signaling pathways common for each of the studied tissues. In addition, we discover that ubiquitylation regulates tissue-specific signaling networks. Many tissue-specific ubiquitylation sites were obtained from brain highlighting the complexity and unique physiology of this organ. We further demonstrate that different di-glycine-lysine-specific monoclonal antibodies exhibit sequence preferences, and that their complementary use increases the depth of ubiquitylation site analysis, thereby providing a more unbiased view of protein ubiquitylation.


Nature Biotechnology | 2015

Acetylation site specificities of lysine deacetylase inhibitors in human cells

Christian Schölz; Brian T. Weinert; Sebastian A. Wagner; Petra Beli; Yasuyuki Miyake; Jun Qi; Lars Juhl Jensen; Werner Streicher; Anna R. McCarthy; Nicholas J. Westwood; Sonia Lain; Jürgen Cox; Patrick Matthias; Matthias Mann; James E. Bradner; Chunaram Choudhary

Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the effects of the pan-sirtuin inhibitor nicotinamide are primarily mediated by SIRT1 inhibition. Furthermore, we confirmed that the effects of tubacin and bufexamac on cytoplasmic proteins result from inhibition of HDAC6. Bufexamac also triggered an HDAC6-independent, hypoxia-like response by stabilizing HIF1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases.


Nature Structural & Molecular Biology | 2012

DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks

Anna Mosbech; Ian Gibbs-Seymour; Konstantinos Kagias; Tina Thorslund; Petra Beli; Lou Klitgaard Povlsen; Sofie V. Nielsen; Stine Smedegaard; Garry Sedgwick; Claudia Lukas; Rasmus Hartmann-Petersen; Jiri Lukas; Chunaram Choudhary; Roger Pocock; Simon Bekker-Jensen; Niels Mailand

Ubiquitin-mediated processes orchestrate critical DNA-damage signaling and repair pathways. We identify human DVC1 (C1orf124; Spartan) as a cell cycle–regulated anaphase-promoting complex (APC) substrate that accumulates at stalled replication forks. DVC1 recruitment to sites of replication stress requires its ubiquitin-binding UBZ domain and PCNA-binding PIP box motif but is independent of RAD18-mediated PCNA monoubiquitylation. Via a conserved SHP box, DVC1 recruits the ubiquitin-selective chaperone p97 to blocked replication forks, which may facilitate p97-dependent removal of translesion synthesis (TLS) DNA polymerase η (Pol η) from monoubiquitylated PCNA. DVC1 knockdown enhances UV light–induced mutagenesis, and depletion of human DVC1 or the Caenorhabditis elegans ortholog DVC-1 causes hypersensitivity to replication stress–inducing agents. Our findings establish DVC1 as a DNA damage–targeting p97 adaptor that protects cells from deleterious consequences of replication blocks and suggest an important role of p97 in ubiquitin-dependent regulation of TLS.


Nature Cell Biology | 2008

WAVE and Arp2/3 jointly inhibit filopodium formation by entering into a complex with mDia2

Petra Beli; Debora Mascheroni; Dalu Xu; Metello Innocenti

Lamellipodia/ruffles and filopodia are protruding organelles containing short and highly branched or long and unbranched actin filaments, respectively. The microscopic morphology, dynamic development and protein signature of both lamellipodia/ruffles and filopodia have been investigated; however, little is known about the mechanisms by which cells coordinate the formation of these actin-based extensions. Here, we show that WAVE holds mDia2 and the Arp2/3 complex in a multimolecular complex. WAVE- and Arp2/3-dependent ruffling induced by EGF does not require mDia2. Conversely, the emission of mDia2-dependent filopodia correlates with its disengagement from WAVE. Consistently, the ability of EGF, Cdc42 and serum to induce mDia2-dependent formation of filopodia is increased in the absence of either the WAVE/Abi1/Nap1/PIR121 (WANP) or the Arp2/3 complex. Reintroduction of WAVE2 into WANP-complex knockdown cells markedly reduces filopodia formation independently of actin polymerization. Thus, WAVE and the Arp2/3 complex jointly orchestrate different types of actin-based plasma membrane protrusions by promoting ruffling and inhibiting mDia2-induced filopodia.


The EMBO Journal | 2013

A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

Bine Villumsen; Jannie Rendtlew Danielsen; Lou Klitgaard Povlsen; Kathrine B. Sylvestersen; Andreas Merdes; Petra Beli; Yun-Gui Yang; Chunaram Choudhary; Michael L. Nielsen; Niels Mailand; Simon Bekker-Jensen

Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock, and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress‐responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation. In response to cell stress, MIB1 is abruptly inactivated in a p38‐independent manner, leading to loss of AZI1, PCM1, and CEP290 ubiquitylation and concomitant stimulation of ciliogenesis, even in proliferating cells. Collectively, our findings uncover a new two‐pronged signalling response, which by coupling p38‐dependent phosphorylation with MIB1‐catalysed ubiquitylation of ciliogenesis‐promoting factors plays an important role in controlling centriolar satellite status and key centrosomal functions in a cell stress‐regulated manner.


Nature Cell Biology | 2015

Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair

Christine K. Schmidt; Yaron Galanty; Matylda Sczaniecka-Clift; Julia Coates; Satpal Jhujh; Mukerrem Demir; Matthew Cornwell; Petra Beli

Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies.

Collaboration


Dive into the Petra Beli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Mailand

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Coates

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge