Petra de Graaf
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petra de Graaf.
Molecular and Cellular Biology | 2004
Davide Danovi; Erik Meulmeester; Diego Pasini; Domenico Migliorini; Maria Capra; Ruth Frenk; Petra de Graaf; Sarah Francoz; Patrizia Gasparini; Alberto Gobbi; Kristian Helin; Pier Giuseppe Pelicci; Aart G. Jochemsen; Jean-Christophe Marine
ABSTRACT Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14ARF or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo has been established. However, a direct contribution of Mdmx to tumor formation remains to be demonstrated. Here we show that retrovirus-mediated Mdmx overexpression allows primary mouse embryonic fibroblast immortalization and leads to neoplastic transformation in combination with HRasV12. Furthermore, the human Mdmx ortholog, Hdmx, was found to be overexpressed in a significant percentage of various human tumors and amplified in 5% of primary breast tumors, all of which retained wild-type p53. Hdmx was also amplified and highly expressed in MCF-7, a breast cancer cell line harboring wild-type p53, and interfering RNA-mediated reduction of Hdmx markedly inhibited the growth potential of these cells in a p53-dependent manner. Together, these results make Hdmx a new putative drug target for cancer therapy.
Journal of Biological Chemistry | 2003
Petra de Graaf; Natalie A. Little; Y.F. Ramos; Erik Meulmeester; Stef J. F. Letteboer; Aart G. Jochemsen
The stability of the p53 tumor suppressor protein is critically regulated by the Hdm2 and Hdmx proteins. Hdm2 protein levels are auto-regulated by the self-ubiquitination activity of Hdm2 and on the transcriptional level by p53-activated transcription of the hdm2 gene. Little is known about the regulation of Hdmx expression levels, apart from the observation that the Mdmx protein can be cleaved by caspase-3 in a p53-inducible manner. In the functional analysis of two mutant Hdmx proteins, products of two alternatively spliced mRNAs, it was found that Hdmx proteins are targets for ubiquitination by Mdm2. The stability of the Hdmx protein is partly dependent on the presence of its internal acidic domain. Mdm2 appears only to require an intact RING domain to be able to ubiquitinate Hdmx and target it for proteasomal degradation. These findings highlight the intricate functional relationships between p53, Mdm2, and Hdmx.
Molecular and Cellular Biology | 2003
Erik Meulmeester; Ruth Frenk; Robert Stad; Petra de Graaf; Jean-Christophe Marine; Karen H. Vousden; Aart G. Jochemsen
ABSTRACT The stability of the p53 protein is regulated by Mdm2. By acting as an E3 ubiquitin ligase, Mdm2 directs the ubiquitylation of p53 and its subsequent degradation by the 26S proteasome. In contrast, the Mdmx protein, although structurally similar to Mdm2, cannot ubiquitylate or degrade p53 in vivo. To ascertain which domains determine this functional difference between Mdm2 and Mdmx and consequently are essential for p53 ubiquitylation and degradation, we generated Mdm2-Mdmx chimeric constructs. Here we show that, in addition to a fully functional Mdm2 RING finger, an internal domain of Mdm2 (residues 202 to 302) is essential for p53 ubiquitylation. Strikingly, the function of this domain can be fulfilled in trans, indicating that the RING domain and this internal region perform distinct activities in the ubiquitylation of p53.
Molecular and Cellular Biology | 1998
Zeynep F. Altun-Gultekin; Sanjay Chandriani; Cecile Bougeret; Toshimasa Ishizaki; Shuh Narumiya; Petra de Graaf; Paul M.P. van Bergen en Henegouwen; Hidesaburo Hanafusa; John A. Wagner; Raymond B. Birge
ABSTRACT The small GTPase RhoA plays a critical role in signaling pathways activated by serum-derived factors, such as lysophosphatidic acid (LPA), including the formation of stress fibers in fibroblasts and neurite retraction and rounding of soma in neuronal cells. Previously, we have shown that ectopic expression of v-Crk, an SH2/SH3 domain-containing adapter proteins, in PC12 cells potentiates nerve growth factor (NGF)-induced neurite outgrowth and promotes the survival of cells when NGF is withdrawn. In the present study we show that, when cultured in 15% serum or lysophosphatidic acid-containing medium, the majority of v-Crk-expressing PC12 cells (v-CrkPC12 cells) display a flattened phenotype with broad lamellipodia and are refractory to NGF-induced neurite outgrowth unless serum is withdrawn. v-Crk-mediated cell flattening is inhibited by treatment of cells with C3 toxin or by mutation in the Crk SH2 or SH3 domain. Transient cotransfection of 293T cells with expression plasmids for p160ROCK (Rho-associated coiled-coil-containing kinase) and v-Crk, but not SH2 or SH3 mutants of v-Crk, results in hyperactivation of p160ROCK. Moreover, the level of phosphatidylinositol-4,5-bisphosphate is increased in v-CrkPC12 cells compared to the levels in mutant v-Crk-expressing cells or wild-type cells, consistent with PI(4)P5 kinase being a downstream target for Rho. Expression of v-Crk in PC12 cells does not result in activation of Rac- or Cdc42-dependent kinases PAK and S6 kinase, demonstrating specificity for Rho. In contrast to native PC12 cells, in which focal adhesions and actin stress fibers are not observed, immunohistochemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphery of the cell and are connected to actin cables. The formation of focal adhesions correlates with a concomitant upregulation in the expression of focal adhesion proteins FAK, paxillin, α3-integrin, and a higher-molecular-weight form of β1-integrin. Our results indicate that v-Crk activates the Rho-signaling pathway and serves as a scaffolding protein during the assembly of focal adhesions in PC12 cells.
The EMBO Journal | 2010
Radhika A. Varier; Nikolay S. Outchkourov; Petra de Graaf; Frederik M. A. van Schaik; Henk Jan L Ensing; Fangwei Wang; Jonathan M.G. Higgins; Geert J. P. L. Kops; HTh Marc Timmers
Histone methylation patterns are correlated with eukaryotic gene transcription. High‐affinity binding of the plant homeodomain (PHD) of TFIID subunit TAF3 to trimethylated lysine‐4 of histone H3 (H3K4me3) is involved in promoter recruitment of this basal transcription factor. Here, we show that for transcription activation the PHD of TAF3 can be replaced by PHDs of other high‐affinity H3K4me3 binders. Interestingly, H3K4me3 binding of TFIID and the TAF3‐PHD is decreased by phosphorylation of the adjacent threonine residue (H3T3), which coincides with mitotic inhibition of transcription. Ectopic expression of the H3T3 kinase haspin repressed TAF3‐mediated transcription of endogenous and of reporter genes and decreased TFIID association with chromatin. Conversely, immunofluorescence and live‐cell microscopy studies showed an increased association of TFIID with mitotic chromosomes upon haspin knockdown. Based on our observations, we propose that a histone H3 phospho–methyl switch regulates TFIID‐mediated transcription during mitotic progression of the cell cycle.
Cell Reports | 2013
Nikolay S. Outchkourov; Jose M. Muiño; Kerstin Kaufmann; Wilfred van IJcken; Marian J. A. Groot Koerkamp; Dik van Leenen; Petra de Graaf; Frank C. P. Holstege; Frank Grosveld; H. T. Marc Timmers
The functional organization of eukaryotic genomes correlates with specific patterns of histone methylations. Regulatory regions in genomes such as enhancers and promoters differ in their extent of methylation of histone H3 at lysine-4 (H3K4), but it is largely unknown how the different methylation states are specified and controlled. Here, we show that the Kdm5c/Jarid1c/SMCX member of the Kdm5 family of H3K4 demethylases can be recruited to both enhancer and promoter elements in mouse embryonic stem cells and in neuronal progenitor cells. Knockdown of Kdm5c deregulates transcription via local increases in H3K4me3. Our data indicate that by restricting H3K4me3 modification at core promoters, Kdm5c dampens transcription, but at enhancers Kdm5c stimulates their activity. Remarkably, an impaired enhancer function activates the intrinsic promoter activity of Kdm5c-bound distal elements. Our results demonstrate that the Kdm5c demethylase plays a crucial and dynamic role in the functional discrimination between enhancers and core promoters.
Journal of Cell Science | 2010
Petra de Graaf; Florence Mousson; Bart Geverts; Elisabeth Scheer; Laszlo Tora; Adriaan B. Houtsmuller; H. Th. Marc Timmers
Gene transcription in mammalian cells is a dynamic process involving regulated assembly of transcription complexes on chromatin in which the TATA-binding protein (TBP) plays a central role. Here, we investigate the dynamic behaviour of TBP by a combination of fluorescence recovery after photobleaching (FRAP) and biochemical assays using human cell lines of different origin. The majority of nucleoplasmic TBP and other TFIID subunits associate with chromatin in a highly dynamic manner. TBP dynamics are regulated by the joint action of the SNF2-related BTAF1 protein and the NC2 complex. Strikingly, both BTAF1 and NC2 predominantly affect TBP dissociation rates, leaving the association rate unchanged. Chromatin immunoprecipitation shows that BTAF1 negatively regulates TBP and NC2 binding to active promoters. Our results support a model for a BTAF1-mediated release of TBP-NC2 complexes from chromatin.
PLOS ONE | 2012
Markus A. Kleinschmidt; Petra de Graaf; Hetty A. A. M. van Teeffelen; H. Th. Marc Timmers
PRMT6 belongs to the family of Protein Arginine Methyltransferase (PRMT) enzymes that catalyze the methylation of guanidino nitrogens of arginine residues. PRMT6 has been shown to modify the tail of histone H3, but the in vivo function of PRMT6 is largely unknown. Here, we show that PRMT6 regulates cell cycle progression. Knockdown of PRMT6 expression in the human osteosarcoma cell line U2OS results in an accumulation of cells at the G2 checkpoint. Loss of PRMT6 coincides with upregulation of p21 and p27, two members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors. Gene expression and promoter analysis show that p21 and p27 are direct targets of PRMT6, which involves methylation of arginine-2 of histone H3. Our findings imply arginine methylation of histones by PRMT6 in cell cycle regulation.
PLOS ONE | 2015
Vincent de Kemp; Petra de Graaf; Joost O. Fledderus; J.L.H. Ruud Bosch; Laetitia M.O. de Kort
Background Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. Purpose To review recent literature on tissue engineering for human urethral reconstruction. Methods A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. Results A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Conclusions Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.
Bioinformatics | 2010
Frank Johannes; René Wardenaar; Maria Colomé-Tatché; Florence Mousson; Petra de Graaf; Michal Mokry; Victor Guryev; H. Th. Marc Timmers; Edwin Cuppen; Ritsert C. Jansen
MOTIVATION ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in epigenetic patterns during development (intra-individual) or at the population level (inter-individual). This requires statistical methods that permit a simultaneous comparison of multiple ChIP samples on a global as well as locus-specific scale. Current analytical approaches are mainly geared toward single sample investigations, and therefore have limited applicability in this comparative setting. This shortcoming presents a bottleneck in biological interpretations of multiple sample data. RESULTS To address this limitation, we introduce a parametric classification approach for the simultaneous analysis of two (or more) ChIP samples. We consider several competing models that reflect alternative biological assumptions about the global distribution of the data. Inferences about locus-specific and genome-wide chromatin differences are reached through the estimation of multivariate mixtures. Parameter estimates are obtained using an incremental version of the Expectation-Maximization algorithm (IEM). We demonstrate efficient scalability and application to three very diverse ChIP-chip and ChIP-seq experiments. The proposed approach is evaluated against several published ChIP-chip and ChIP-seq software packages. We recommend its use as a first-pass algorithm to identify candidate regions in the epigenome, possibly followed by some type of second-pass algorithm to fine-tune detected peaks in accordance with biological or technological criteria. AVAILABILITY R source code is available at http://gbic.biol.rug.nl/supplementary/2009/ChromatinProfiles/. Access to Chip-seq data: GEO repository GSE17937.