Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Ehling is active.

Publication


Featured researches published by Petra Ehling.


Nature Medicine | 2013

Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS

Stefan Bittner; Tobias Ruck; Michael K. Schuhmann; Alexander M. Herrmann; Hamid Moha ou Maati; Nicole Bobak; Kerstin Göbel; Friederike Langhauser; David Stegner; Petra Ehling; Marc Borsotto; Hans-Christian Pape; Bernhard Nieswandt; Christoph Kleinschnitz; Catherine Heurteaux; Hans-Joachim Galla; Thomas Budde; Heinz Wiendl; Sven G. Meuth

The blood-brain barrier (BBB) is an integral part of the neurovascular unit (NVU). The NVU is comprised of endothelial cells that are interconnected by tight junctions resting on a parenchymal basement membrane ensheathed by pericytes, smooth muscle cells and a layer of astrocyte end feet. Circulating blood cells, such as leukocytes, complete the NVU. BBB disruption is common in several neurological diseases, but the molecular mechanisms involved remain largely unknown. We analyzed the role of TWIK-related potassium channel-1 (TREK1, encoded by KCNK2) in human and mouse endothelial cells and the BBB. TREK1 was downregulated in endothelial cells by treatment with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Blocking TREK1 increased leukocyte transmigration, whereas TREK1 activation had the opposite effect. We identified altered mitogen-activated protein (MAP) kinase signaling, actin remodeling and upregulation of cellular adhesion molecules as potential mechanisms of increased migration in TREK1-deficient (Kcnk2−/−) cells. In Kcnk2−/− mice, brain endothelial cells showed an upregulation of the cellular adhesion molecules ICAM1, VCAM1 and PECAM1 and facilitated leukocyte trafficking into the CNS. Following the induction of experimental autoimmune encephalomyelitis (EAE) by immunization with a myelin oligodendrocyte protein (MOG)35–55 peptide, Kcnk2−/− mice showed higher EAE severity scores that were accompanied by increased cellular infiltrates in the central nervous system (CNS). The severity of EAE was attenuated in mice given the amyotrophic lateral sclerosis drug riluzole or fed a diet enriched with linseed oil (which contains the TREK-1 activating omega-3 fatty acid α-linolenic acid). These beneficial effects were reduced in Kcnk2−/− mice, suggesting TREK-1 activating compounds may be used therapeutically to treat diseases related to BBB dysfunction.


Journal of Autoimmunity | 2016

Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity

Stephanie Hucke; Melanie Eschborn; Marie Liebmann; Martin Herold; Nicole Freise; Annika Engbers; Petra Ehling; Sven G. Meuth; J. Roth; Tanja Kuhlmann; Heinz Wiendl; Luisa Klotz

The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.


The EMBO Journal | 2010

RNA editing modulates the binding of drugs and highly unsaturated fatty acids to the open pore of Kv potassium channels

Niels Decher; Anne K. Streit; Markus Rapedius; Michael F. Netter; Stefanie Marzian; Petra Ehling; Günter Schlichthörl; Tobias Craan; Vijay Renigunta; Annemarie Köhler; Richard Dodel; Ricardo A. Navarro-Polanco; Regina Preisig-Müller; Gerhard Klebe; Thomas Budde; Thomas Baukrowitz; Jürgen Daut

The time course of inactivation of voltage‐activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvβ subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce ‘open‐channel block’. Open‐channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid‐induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.


The Journal of Physiology | 2015

Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons

Pawan Bista; Matthias Pawlowski; Manuela Cerina; Petra Ehling; Michael Leist; Patrick Meuth; Ania Aissaoui; Marc Borsotto; Catherine Heurteaux; Niels Decher; Hans-Christian Pape; Dominik Oliver; Sven G. Meuth; Thomas Budde

During the behavioural states of sleep and wakefulness thalamocortical relay neurons fire action potentials in high frequency bursts or tonic sequences, respectively. The modulation of specific K+ channel types, termed TASK and TREK, allows these neurons to switch between the two modes of activity. In this study we show that the signalling lipids phosphatidylinositol 4,5‐bisphosphate (PIP2) and diacylglycerol (DAG), which are components of their membrane environment, switch on and shut off TREK and TASK channels, respectively. These channel modulations contribute to a better understanding of the molecular basis of the effects of neurotransmitters such as ACh which are released by the brainstem arousal system. The present report introduces PIP2 and DAG as new elements of signal transduction in the thalamus.


Neurobiology of Disease | 2012

Differential regulation of HCN channel isoform expression in thalamic neurons of epileptic and non-epileptic rat strains

Tatyana Kanyshkova; Patrick Meuth; Pawan Bista; Zhiqiang Liu; Petra Ehling; Luigi Caputi; Michael Doengi; Dane M. Chetkovich; Hans-Christian Pape; Thomas Budde

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels represent the molecular substrate of the hyperpolarization-activated inward current (I(h)). Although these channels act as pacemakers for the generation of rhythmic activity in the thalamocortical network during sleep and epilepsy, their developmental profile in the thalamus is not yet fully understood. Here we combined electrophysiological, immunohistochemical, and mathematical modeling techniques to examine HCN gene expression and I(h) properties in thalamocortical relay (TC) neurons of the dorsal part of the lateral geniculate nucleus (dLGN) in an epileptic (WAG/Rij) compared to a non-epileptic (ACI) rat strain. Recordings of TC neurons between postnatal day (P) 7 and P90 in both rat strains revealed that I(h) was characterized by higher current density, more hyperpolarized voltage dependence, faster activation kinetics, and reduced cAMP-sensitivity in epileptic animals. All four HCN channel isoforms (HCN1-4) were detected in dLGN, and quantitative analyses revealed a developmental increase of protein expression of HCN1, HCN2, and HCN4 but a decrease of HCN3. HCN1 was expressed at higher levels in WAG/Rij rats, a finding that was correlated with increased expression of the interacting proteins filamin A (FilA) and tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Analysis of a simplified computer model of the thalamic network revealed that the alterations of I(h) found in WAG/Rij rats compensate each other in a way that leaves I(h) availability constant, an effect that ensures unaltered cellular burst activity and thalamic oscillations. These data indicate that during postnatal developmental the hyperpolarizing shift in voltage dependency (resulting in less current availability) is compensated by an increase in current density in WAG/Rij thereby possibly limiting the impact of I(h) on epileptogenesis. Because HCN3 is expressed higher in young versus older animals, HCN3 likely does not contribute to alterations in I(h) in older animals.


Experimental Neurology | 2012

The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis

Stefan Bittner; Marcella A. Bauer; Petra Ehling; Nicole Bobak; Johanna Breuer; Alexander M. Herrmann; Melina Golfels; Heinz Wiendl; Thomas Budde; Sven G. Meuth

The two-pore domain potassium channel TASK1 (KCNK3) has recently emerged as an important modulator in autoimmune CNS inflammation. Previously, it was shown that T lymphocytes obtained from TASK1(-/-) mice display impaired T cell effector functions and that TASK1(-/-) mice show a significantly reduced disease severity in myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We here evaluate a potent and specific TASK1 channel inhibitor, A293, which caused a dose-dependent reduction of T cell effector functions (cytokine production and proliferation). This effect was abolished in CD4(+) T cells from TASK1(-/-) mice but not in cells from TASK3(-/-) mice. In electrophysiological measurements, A293 application induced a significant reduction of the outward current of wildtype T lymphocytes, while there was no effect in TASK1(-/-) cells. Preventive and therapeutic application of A293 significantly ameliorated the EAE disease course in wildtype mice while it had no significant effect in TASK1(-/-) mice and was still partly effective in TASK3(-/-) mice. In summary, our findings support the concept of TASK1 as an attractive drug target for autoimmune disorders.


Biochimica et Biophysica Acta | 2013

Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes

Joseph Andronic; Nicole Bobak; Stefan Bittner; Petra Ehling; Christoph Kleinschnitz; Alexander M. Herrmann; Heiko Zimmermann; Markus Sauer; Heinz Wiendl; Thomas Budde; Sven G. Meuth; Vladimir L. Sukhorukov

Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels.


Experimental & Translational Stroke Medicine | 2010

Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9)

Petra Ehling; Stefan Bittner; Nicole Bobak; Tobias Schwarz; Heinz Wiendl; Thomas Budde; Christoph Kleinschnitz; Sven G. Meuth

BackgroundRecently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1.MethodsWe combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation.ResultsPatch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 ± 9.80% and 69.92 ± 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 ± 17.31 mm3 and 47.10 ± 19.26 mm3, respectively).ConclusionsTogether with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.


Pflügers Archiv: European Journal of Physiology | 2012

Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons.

Pawan Bista; Sven G. Meuth; Tatyana Kanyshkova; Manuela Cerina; Matthias Pawlowski; Petra Ehling; Peter Landgraf; Marc Borsotto; Catherine Heurteaux; Hans-Christian Pape; Thomas Baukrowitz; Thomas Budde

Modulation of the standing outward current (ISO) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K+ (K2P) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K+ (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K+ (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M1AChR-(pirenzepine, MT-7) and M3AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCβ (PI-PLC) inhibitors (U73122, ET-18-OCH3), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5′-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on ISO. Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M1AChR/M3AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.


PLOS ONE | 2011

Modulation of calcium-dependent inactivation of L-type Ca2+ channels via β-adrenergic signaling in thalamocortical relay neurons.

Vladan Rankovic; Peter Landgraf; Tatyana Kanyshkova; Petra Ehling; Sven G. Meuth; Michael R. Kreutz; Thomas Budde; Thomas Munsch

Neuronal high-voltage-activated (HVA) Ca2+ channels are rapidly inactivated by a mechanism that is termed Ca2+-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14–22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after βAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via βAR stimulation requires a protein complex consisting of CaV1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca2+ channels allowing their phosphorylation and thereby modulation of CDI.

Collaboration


Dive into the Petra Ehling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge