Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Fey is active.

Publication


Featured researches published by Petra Fey.


Nature | 2005

The genome of the social amoeba Dictyostelium discoideum

Ludwig Eichinger; J. A. Pachebat; G. Glöckner; Marie-Adele Rajandream; Richard Sucgang; Matthew Berriman; J. Song; Rolf Olsen; Karol Szafranski; Qikai Xu; Budi Tunggal; Sarah K. Kummerfeld; B. A. Konfortov; Francisco Rivero; Alan Thomas Bankier; R. Lehmann; N. Hamlin; Robert Davies; Pascale Gaudet; Petra Fey; Karen E Pilcher; Guokai Chen; David L. Saunders; Erica Sodergren; Paul Davis; Arnaud Kerhornou; X. Nie; Neil Hall; Christophe Anjard; Lisa Hemphill

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Nucleic Acids Research | 2008

The Gene Ontology project in 2008

Midori A. Harris; Jennifer I. Deegan; Amelia Ireland; Jane Lomax; Michael Ashburner; Susan Tweedie; Seth Carbon; Suzanna E. Lewis; Christopher J. Mungall; John Richter; Karen Eilbeck; Judith A. Blake; Alexander D. Diehl; Mary E. Dolan; Harold Drabkin; Janan T. Eppig; David P. Hill; Ni Li; Martin Ringwald; Rama Balakrishnan; Gail Binkley; J. Michael Cherry; Karen R. Christie; Maria C. Costanzo; Qing Dong; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong

The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.


PLOS Computational Biology | 2009

The Gene Ontology's Reference Genome Project: A Unified Framework for Functional Annotation across Species

Pascale Gaudet; Rex L. Chisholm; Tanya Z. Berardini; Emily Dimmer; Stacia R. Engel; Petra Fey; David P. Hill; Doug Howe; James C. Hu; Rachael P. Huntley; Varsha K. Khodiyar; Ranjana Kishore; Donghui Li; Ruth C. Lovering; Fiona M. McCarthy; Li Ni; Victoria Petri; Deborah A. Siegele; Susan Tweedie; Kimberly Van Auken; Valerie Wood; Siddhartha Basu; Seth Carbon; Mary E. Dolan; Christopher J. Mungall; Kara Dolinski; Paul D. Thomas; Michael Ashburner; Judith A. Blake; J. Michael Cherry

The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GOs logical structure and biological content.


Nature Protocols | 2007

Protocols for growth and development of Dictyostelium discoideum

Petra Fey; Anthony S Kowal; Pascale Gaudet; Karen E Pilcher; Rex L. Chisholm

Dictyostelium discoideum, a unicellular organism capable of developing into a multicellular structure, is a powerful model system to study a variety of biological processes. Because it is inexpensive and relatively easy to grow, Dictyostelium is also frequently used in teaching laboratories. Here we describe conditions for successfully growing and developing Dictyostelium cells and methods for long-term storage of Dictyostelium amoebae and spores.


PLOS Genetics | 2006

The Dictyostelium Kinome—Analysis of the Protein Kinases from a Simple Model Organism

Jonathan M. Goldberg; Gerard Manning; Allen Liu; Petra Fey; Karen E Pilcher; Yanji Xu; Janet L. Smith

Dictyostelium discoideum is a widely studied model organism with both unicellular and multicellular forms in its developmental cycle. The Dictyostelium genome encodes 285 predicted protein kinases, similar to the count of the much more advanced Drosophila. It contains members of most kinase classes shared by fungi and metazoans, as well as many previously thought to be metazoan specific, indicating that they have been secondarily lost from the fungal lineage. This includes the entire tyrosine kinase–like (TKL) group, which is expanded in Dictyostelium and includes several novel receptor kinases. Dictyostelium lacks tyrosine kinase group kinases, and most tyrosine phosphorylation appears to be mediated by TKL kinases. About half of Dictyostelium kinases occur in subfamilies not present in yeast or metazoa, suggesting that protein kinases have played key roles in the adaptation of Dictyostelium to its habitat. This study offers insights into kinase evolution and provides a focus for signaling analysis in this system.


Genome Biology | 2011

Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum

Richard Sucgang; Alan Kuo; Xiangjun Tian; William Salerno; Anup Parikh; Christa L. Feasley; Eileen Dalin; Hank Tu; Eryong Huang; Kerrie Barry; Erika Lindquist; Harris Shapiro; David Bruce; Jeremy Schmutz; Asaf Salamov; Petra Fey; Pascale Gaudet; Christophe Anjard; M. Madan Babu; Siddhartha Basu; Yulia A. Bushmanova; Hanke van der Wel; Mariko Katoh-Kurasawa; Christopher Dinh; Pedro M. Coutinho; Tamao Saito; Marek Eliáš; Pauline Schaap; Robert R. Kay; Bernard Henrissat

BackgroundThe social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum.ResultsWe have produced a draft genome sequence of another group dictyostelid, Dictyosteliumpurpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict.ConclusionsThe findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.


Nucleic Acids Research | 2006

dictyBase, the model organism database for Dictyostelium discoideum

Rex L. Chisholm; Pascale Gaudet; Eric M. Just; Karen E Pilcher; Petra Fey; Sohel N. Merchant; Warren A. Kibbe

dictyBase () is the model organism database (MOD) for the social amoeba Dictyostelium discoideum. The unique biology and phylogenetic position of Dictyostelium offer a great opportunity to gain knowledge of processes not characterized in other organisms. The recent completion of the 34 MB genome sequence, together with the sizable scientific literature using Dictyostelium as a research organism, provided the necessary tools to create a well-annotated genome. dictyBase has leveraged software developed by the Saccharomyces Genome Database and the Generic Model Organism Database project. This has reduced the time required to develop a full-featured MOD and greatly facilitated our ability to focus on annotation and providing new functionality. We hope that manual curation of the Dictyostelium genome will facilitate the annotation of other genomes.


Journal of Cell Biology | 2002

SadA, a novel adhesion receptor in Dictyostelium

Petra Fey; Stephen Stephens; Margaret A. Titus; Rex L. Chisholm

Little is known about cell–substrate adhesion and how motile and adhesive forces work together in moving cells. The ability to rapidly screen a large number of insertional mutants prompted us to perform a genetic screen in Dictyostelium to isolate adhesion-deficient mutants. The resulting substrate adhesion–deficient (sad) mutants grew in plastic dishes without attaching to the substrate. The cells were often larger than their wild-type parents and displayed a rough surface with many apparent blebs. One of these mutants, sadA−, completely lacked substrate adhesion in growth medium. The sadA− mutant also showed slightly impaired cytokinesis, an aberrant F-actin organization, and a phagocytosis defect. Deletion of the sadA gene by homologous recombination recreated the original mutant phenotype. Expression of sadA–GFP in sadA-null cells restored the wild-type phenotype. In sadA–GFP-rescued mutant cells, sadA–GFP localized to the cell surface, appropriate for an adhesion molecule. SadA contains nine putative transmembrane domains and three conserved EGF-like repeats in a predicted extracellular domain. The EGF repeats are similar to corresponding regions in proteins known to be involved in adhesion, such as tenascins and integrins. Our data combined suggest that sadA is the first substrate adhesion receptor to be identified in Dictyostelium.


Nucleic Acids Research | 2004

dictyBase: a new Dictyostelium discoideum genome database.

Lisa Kreppel; Petra Fey; Pascale Gaudet; Eric M. Just; Warren A. Kibbe; Rex L. Chisholm; Alan R. Kimmel

Dictyostelium discoideum is a powerful and genetically tractable model system used for the study of numerous cellular molecular mechanisms including chemotaxis, phagocytosis and signal transduction. The past 2 years have seen a significant expansion in the scope and accessibility of online resources for Dictyostelium. Recent advances have focused on the development of a new comprehensive online resource called dictyBase (http://dictybase.org). This database not only provides access to genomic data including functional annotation of genes, gene products and chromosomal mapping, but also to extensive biological information such as mutant phenotypes and corresponding reference material. In conjunction with additional sites (http://genome. imb-jena.de/dictyostelium/, http://dictyensembl. bioch.bcm.tmc.edu and http://www.sanger.ac.uk/Projects/D_discoideum/) from the genome sequencing and assembly centers, these improvements have expanded the scope of the Dictyostelium databases making them accessible and useful to any researcher interested in comparative and functional genomics in metazoan organisms.


Nature Protocols | 2007

Transformation of Dictyostelium discoideum with plasmid DNA

Pascale Gaudet; Karen E Pilcher; Petra Fey; Rex L. Chisholm

DNA-mediated transformation is one of the most widely used techniques to study gene function. The eukaryote Dictyostelium discoideum is amenable to numerous genetic manipulations that require insertion of foreign DNA into cells. Here we describe two commonly used methods to transform Dictyostelium cells: calcium phosphate precipitation, resulting in high copy number transformants; and electroporation, an effective technique for producing single integration events into genomic DNA. Single integrations are required for gene disruption by homologous recombination. We also discuss how different selection markers affect vector copy number in transformants and explain why blasticidin has become the preferred selectable marker for making gene knockouts. Both procedures can be accomplished in less than 2 h of hands-on time; however, the calcium phosphate precipitation method contains several incubations, including one of at least 4 h, so the total time required for the transformation is approximately 8 h.

Collaboration


Dive into the Petra Fey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Gaudet

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donghui Li

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Eric M. Just

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Kimberly Van Auken

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge