Petra Fromme
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petra Fromme.
Nature | 2001
Patrick Jordan; Petra Fromme; Horst Toblas Witt; Olaf Klukas; Wolfram Saenger; Norbert Krauss
Life on Earth depends on photosynthesis, the conversion of light energy from the Sun to chemical energy. In plants, green algae and cyanobacteria, this process is driven by the cooperation of two large protein–cofactor complexes, photosystems I and II, which are located in the thylakoid photosynthetic membranes. The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules. The structural information on the proteins and cofactors and their interactions provides a basis for understanding how the high efficiency of photosystem I in light capturing and electron transfer is achieved.
Nature | 2001
Athina Zouni; H.T. Witt; Jan Kern; Petra Fromme; Norbert Krauss; Wolfram Saenger; Peter Orth
Oxygenic photosynthesis is the principal energy converter on earth. It is driven by photosystems I and II, two large protein–cofactor complexes located in the thylakoid membrane and acting in series. In photosystem II, water is oxidized; this event provides the overall process with the necessary electrons and protons, and the atmosphere with oxygen. To date, structural information on the architecture of the complex has been provided by electron microscopy of intact, active photosystem II at 15–30 Å resolution, and by electron crystallography on two-dimensional crystals of D1-D2-CP47 photosystem II fragments without water oxidizing activity at 8 Å resolution. Here we describe the X-ray structure of photosystem II on the basis of crystals fully active in water oxidation. The structure shows how protein subunits and cofactors are spatially organized. The larger subunits are assigned and the locations and orientations of the cofactors are defined. We also provide new information on the position, size and shape of the manganese cluster, which catalyzes water oxidation.
Nature | 2011
Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Nature | 2011
M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Science | 2012
Sébastien Boutet; Lukas Lomb; Garth J. Williams; Thomas R. M. Barends; Andrew Aquila; R. Bruce Doak; Uwe Weierstall; Daniel P. DePonte; Jan Steinbrener; Robert L. Shoeman; Marc Messerschmidt; Anton Barty; Thomas A. White; Stephan Kassemeyer; Richard A. Kirian; M. Marvin Seibert; Paul A. Montanez; Chris Kenney; R. Herbst; P. Hart; J. Pines; G. Haller; Sol M. Gruner; Hugh T. Philipp; Mark W. Tate; Marianne Hromalik; Lucas J. Koerner; Niels van Bakel; John Morse; Wilfred Ghonsalves
Size Matters Less X-ray crystallography is a central research tool for uncovering the structures of proteins and other macromolecules. However, its applicability typically requires growth of large crystals, in part because a sufficient number of molecules must be present in the lattice for the sample to withstand x-ray—induced damage. Boutet et al. (p. 362, published online 31 May) now demonstrate that the intense x-ray pulses emitted by a free-electron laser source can yield data in few enough exposures to uncover the high-resolution structure of microcrystals. A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required. Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
Biochimica et Biophysica Acta | 2001
Petra Fromme; Patrick Jordan; Norbert Krauß
In plants and cyanobacteria, the primary step in oxygenic photosynthesis, the light induced charge separation, is driven by two large membrane intrinsic protein complexes, the photosystems I and II. Photosystem I catalyses the light driven electron transfer from plastocyanin/cytochrome c(6) on the lumenal side of the membrane to ferredoxin/flavodoxin at the stromal side by a chain of electron carriers. Photosystem I of Synechococcus elongatus consists of 12 protein subunits, 96 chlorophyll a molecules, 22 carotenoids, three [4Fe4S] clusters and two phylloquinones. Furthermore, it has been discovered that four lipids are intrinsic components of photosystem I. Photosystem I exists as a trimer in the native membrane with a molecular mass of 1068 kDa for the whole complex. The X-ray structure of photosystem I at a resolution of 2.5 A shows the location of the individual subunits and cofactors and provides new information on the protein-cofactor interactions. [P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Nature 411 (2001) 909-917]. In this review, biochemical data and results of biophysical investigations are discussed with respect to the X-ray crystallographic structure in order to give an overview of the structure and function of this large membrane protein.
Nature | 2015
Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.
Science | 2013
Karol Nass; Daniel P. DePonte; Thomas A. White; Dirk Rehders; Anton Barty; Francesco Stellato; Mengning Liang; Thomas R. M. Barends; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt; M. Marvin Seibert; Andrew Aquila; David Arnlund; Sasa Bajt; Torsten Barth; Michael J. Bogan; Carl Caleman; Tzu Chiao Chao; R. Bruce Doak; Holger Fleckenstein; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Linda C. Johansson; Stephan Kassemeyer; Gergely Katona; Richard A. Kirian
Diffraction Before Destruction A bottleneck in x-ray crystallography is the growth of well-ordered crystals large enough to obtain high-resolution diffraction data within an exposure that limits radiation damage. Serial femtosecond crystallography promises to overcome these constraints by using short intense pulses that out-run radiation damage. A stream of crystals is flowed across the free-electron beam and for each pulse, diffraction data is recorded from a single crystal before it is destroyed. Redecke et al. (p. 227, published online 29 November; see the Perspective by Helliwell) used this technique to determine the structure of an enzyme from Trypanosoma brucei, the parasite that causes sleeping sickness, from micron-sized crystals grown within insect cells. The structure shows how this enzyme, which is involved in degradation of host proteins, is natively inhibited prior to activation, which could help in the development of parasite-specific inhibitors. In vivo crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease. [Also see Perspective by Helliwell] The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
Nature Communications | 2014
Uwe Weierstall; Daniel James; Chong Wang; Thomas A. White; Dingjie Wang; Wei Liu; John C. Spence; R. Bruce Doak; Garrett Nelson; Petra Fromme; Raimund Fromme; Ingo Grotjohann; Christopher Kupitz; Nadia A. Zatsepin; Haiguang Liu; Shibom Basu; Daniel Wacker; Gye Won Han; Vsevolod Katritch; Sébastien Boutet; Marc Messerschmidt; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Markus Klinker; Cornelius Gati; Robert L. Shoeman; Anton Barty; Henry N. Chapman; Richard A. Kirian
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Science | 2013
Wei Liu; Daniel Wacker; Cornelius Gati; Gye Won Han; Daniel James; Dingjie Wang; Garrett Nelson; Uwe Weierstall; Vsevolod Katritch; Anton Barty; Nadia A. Zatsepin; Dianfan Li; Marc Messerschmidt; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Chong Wang; Syed T. A. Shah; Shibom Basu; Raimund Fromme; Christopher Kupitz; Kimberley Rendek; Ingo Grotjohann; Petra Fromme; Richard A. Kirian; Kenneth R. Beyerlein; Thomas A. White; Henry N. Chapman; Martin Caffrey
G Structures G protein–coupled receptors (GPCRs) are eukaryotic membrane proteins that have a central role in cellular communication and have become key drug targets. To overcome the difficulties of growing GPCRs crystals, Liu et al. (p. 1521) used an x-ray free-electron laser to determine a high-resolution structure of the serotonin receptor from microcrystals. The structure of a human serotonin receptor was solved using a free-electron laser to analyze microcrystals. X-ray crystallography of G protein–coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.