Petra Hajkova
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petra Hajkova.
Cell | 2007
M. Azim Surani; Katsuhiko Hayashi; Petra Hajkova
Genetic and epigenetic mechanisms regulate the transition from the totipotent zygote to pluripotent primitive ectoderm cells in the inner cell mass of mouse blastocysts. These pluripotent cells can be propagated indefinitely in vitro, underpinned by a unique epigenetic state. Following implantation of the blastocyst, diverse epigenetic modifiers control differentiation of pluripotent epiblast cells into somatic cells, while specification of germ cells requires repression of the somatic program. Regenerating totipotency during development of germ cells entails re-expression of pluripotency-specific genes and extensive erasure of epigenetic modifications. Increasing knowledge of key underlying mechanisms heightens prospects for creating pluripotent cells directly from adult somatic cells.
Nature | 2008
Petra Hajkova; Katia Ancelin; Tanja Waldmann; Nicolas Lacoste; Ulrike C. Lange; Francesca Cesari; Caroline Lee; Geneviève Almouzni; Robert Schneider; M. Azim Surani
A unique feature of the germ cell lineage is the generation of totipotency. A critical event in this context is DNA demethylation and the erasure of parental imprints in mouse primordial germ cells (PGCs) on embryonic day 11.5 (E11.5) after they enter into the developing gonads. Little is yet known about the mechanism involved, except that it is apparently an active process. We have examined the associated changes in the chromatin to gain further insights into this reprogramming event. Here we show that the chromatin changes occur in two steps. The first changes in nascent PGCs at E8.5 establish a distinctive chromatin signature that is reminiscent of pluripotency. Next, when PGCs are residing in the gonads, major changes occur in nuclear architecture accompanied by an extensive erasure of several histone modifications and exchange of histone variants. Furthermore, the histone chaperones HIRA and NAP-1 (NAP111), which are implicated in histone exchange, accumulate in PGC nuclei undergoing reprogramming. We therefore suggest that the mechanism of histone replacement is critical for these chromatin rearrangements to occur. The marked chromatin changes are intimately linked with genome-wide DNA demethylation. On the basis of the timing of the observed events, we propose that if DNA demethylation entails a DNA repair-based mechanism, the evident histone replacement would represent a repair-induced response event rather than being a prerequisite.
Science | 2010
Petra Hajkova; Sean J. Jeffries; Caroline G. Lee; Nigel Miller; M. Azim Surani
Erasing Markers Epigenetic reprogramming of the mammalian genome, which involves the removal and replacement of the various regulatory epigenetic marks such as DNA methylation, occurs during germ cell differentiation and during early zygotic development. This process is also critical during the experimental generation of stem cells, but the factors and pathways that control epigenetic reprogramming are not well understood. Hajkova et al. (p. 78) investigated the erasure of DNA methylation during germ cell differentiation and during early zygotic development in the developing mouse and found that factors involved in the base excision repair (BER) pathway, which helps repair damaged DNA, were involved. Furthermore, inhibitors of BER resulted in the retention of DNA methylation in the zygote. Removing epigenetic marks early in mammalian development involves a DNA damage repair pathway. Genome-wide active DNA demethylation in primordial germ cells (PGCs), which reprograms the epigenome for totipotency, is linked to changes in nuclear architecture, loss of histone modifications, and widespread histone replacement. Here, we show that DNA demethylation in the mouse PGCs is mechanistically linked to the appearance of single-stranded DNA (ssDNA) breaks and the activation of the base excision repair (BER) pathway, as is the case in the zygote where the paternal pronucleus undergoes active DNA demethylation shortly after fertilization. Whereas BER might be triggered by deamination of a methylcytosine (5mC), cumulative evidence indicates other mechanisms in germ cells. We demonstrate that DNA repair through BER represents a core component of genome-wide DNA demethylation in vivo and provides a mechanistic link to the extensive chromatin remodeling in developing PGCs.
Nature Cell Biology | 2006
Katia Ancelin; Ulrike C. Lange; Petra Hajkova; Robert Schneider; Andrew J. Bannister; Tony Kouzarides; M. Azim Surani
Blimp1, a transcriptional repressor, has a crucial role in the specification of primordial germ cells (PGCs) in mice at embryonic day 7.5 (E7.5). This SET–PR domain protein can form complexes with various chromatin modifiers in a context-dependent manner. Here, we show that Blimp1 has a novel interaction with Prmt5, an arginine-specific histone methyltransferase, which mediates symmetrical dimethylation of arginine 3 on histone H2A and/or H4 tails (H2A/H4R3me2s). Prmt5 has been shown to associate with Tudor, a component of germ plasm in Drosophila melanogaster. Blimp1–Prmt5 colocalization results in high levels of H2A/H4 R3 methylation in PGCs at E8.5. However, at E11.5, Blimp1–Prmt5 translocates from the nucleus to the cytoplasm, resulting in the loss of H2A/H4 R3 methylation at the time of extensive epigenetic reprogramming of germ cells. Subsequently, Dhx38, a putative target of the Blimp1–Prmt5 complex, is upregulated. Interestingly, expression of Dhx38 is also seen in pluripotent embryonic germ cells that are derived from PGCs when Blimp1 expression is lost. Our study demonstrates that Blimp1 is involved in a novel transcriptional regulatory complex in the mouse germ-cell lineage.
PLOS ONE | 2008
Katsuhiko Hayashi; Susana M. Chuva de Sousa Lopes; Masahiro Kaneda; Fuchou Tang; Petra Hajkova; Kaiqin Lao; Dónal O'Carroll; Partha P. Das; Alexander Tarakhovsky; Eric A. Miska; M. Azim Surani
Background MicroRNAs (miRNAs) are critical regulators of transcriptional and post-transcriptional gene silencing, which are involved in multiple developmental processes in many organisms. Apart from miRNAs, mouse germ cells express another type of small RNA, piwi-interacting RNAs (piRNAs). Although it has been clear that piRNAs play a role in repression of retrotransposons during spermatogenesis, the function of miRNA in mouse germ cells has been unclear. Methodology/Principal Findings In this study, we first revealed the expression pattern of miRNAs by using a real-time PCR-based 220-plex miRNA expression profiling method. During development of germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells (PGCs) and spermatogonia. A set of miRNAs was developmentally regulated. We next analysed function of miRNA biogenesis in germ cell development by using conditional Dicer-knockout mice in which Dicer gene was deleted specifically in the germ cells. Dicer-deleted PGCs and spermatogonia exhibited poor proliferation. Retrotransposon activity was unexpectedly suppressed in Dicer-deleted PGCs, but not affected in the spermatogonia. In Dicer-deleted testis, spermatogenesis was retarded at an early stage when proliferation and/or early differentiation. Additionally, we analysed spermatogenesis in conditional Argonaute2-deficient mice. In contrast to Dicer-deficient testis, spermatogenesis in Argonaute2-deficient testis was indistinguishable from that in wild type. Conclusion/Significance These results illustrate that miRNAs are important for the proliferation of PGCs and spermatogonia, but dispensable for the repression of retrotransposons in developing germ cells. Consistently, miRNAs promoting cell cycling are highly expressed in PGCs and spermatogonia. Furthermore, based on normal spermatogenesis in Argonaute2-deficient testis, the critical function of Dicer in spermatogenesis is independent of Argonaute2.
Nucleic Acids Research | 2006
Fuchou Tang; Petra Hajkova; Sheila C. Barton; Kaiqin Lao; M. Azim Surani
MicroRNAs (miRNAs) are a class of 17–25 nt non-coding RNAs that have been shown to have critical functions in a wide variety of biological processes during development. Recently developed miRNA microarray techniques have helped to accelerate research on miRNAs. However, in some instances there is only a limited amount of material available for analysis, which requires more sensitive techniques that can preferably work on single cells. Here we demonstrate that it is possible to analyse miRNA in single cells by using a real-time PCR-based 220-plex miRNA expression profiling method. Development of this technique will greatly facilitate miRNA-related research on cells, such as the founder population of primordial germ cells where rapid and dynamic changes occur in a few cells, and for analysing heterogeneous population of cells. In these and similar cases, our method of single cell analysis is critical for elucidating the diverse roles of miRNAs.
Nature Structural & Molecular Biology | 2013
Harry G. Leitch; Kirsten McEwen; Aleksandra Turp; Vesela Encheva; Tom Carroll; Nils Grabole; William Mansfield; Buhe Nashun; Jaysen G Knezovich; Austin Smith; M. Azim Surani; Petra Hajkova
Naive pluripotent embryonic stem cells (ESCs) and embryonic germ cells (EGCs) are derived from the preimplantation epiblast and primordial germ cells (PGCs), respectively. We investigated whether differences exist between ESCs and EGCs, in view of their distinct developmental origins. PGCs are programmed to undergo global DNA demethylation; however, we find that EGCs and ESCs exhibit equivalent global DNA methylation levels. Inhibition of MEK and Gsk3b by 2i conditions leads to pronounced reduction in DNA methylation in both cell types. This is driven by Prdm14 and is associated with downregulation of Dnmt3a and Dnmt3b. However, genomic imprints are maintained in 2i, and we report derivation of EGCs with intact genomic imprints. Collectively, our findings establish that culture in 2i instills a naive pluripotent state with a distinctive epigenetic configuration that parallels molecular features observed in both the preimplantation epiblast and nascent PGCs.
Genes & Development | 2010
Wee-Wei Tee; Mercedes Pardo; Theunissen Tw; Lu Yu; Jyoti S. Choudhary; Petra Hajkova; Surani Ma
Prmt5, an arginine methyltransferase, has multiple roles in germ cells, and possibly in pluripotency. Here we show that loss of Prmt5 function is early embryonic-lethal due to the abrogation of pluripotent cells in blastocysts. Prmt5 is also up-regulated in the cytoplasm during the derivation of embryonic stem (ES) cells together with Stat3, where they persist to maintain pluripotency. Prmt5 in association with Mep50 methylates cytosolic histone H2A (H2AR3me2s) to repress differentiation genes in ES cells. Loss of Prmt5 or Mep50 results in derepression of differentiation genes, indicating the significance of the Prmt5/Mep50 complex for pluripotency, which may occur in conjunction with the leukemia inhibitory factor (LIF)/Stat3 pathway.
Nature Protocols | 2006
Fuchou Tang; Petra Hajkova; Sheila C. Barton; Dónal O'Carroll; Caroline Lee; Kaiqin Lao; M. Azim Surani
Here we describe a protocol for the detection of the microRNA (miRNA) expression profile of a single cell by stem-looped real-time PCR, which is specific to mature miRNAs. A single cell is first lysed by heat treatment without further purification. Then, 220 known miRNAs are reverse transcribed into corresponding cDNAs by stem-looped primers. This is followed by an initial PCR step to amplify the cDNAs and generate enough material to permit separate multiplex detection. The diluted initial PCR product is used as a template to check individual miRNA expression by real-time PCR. This sensitive technique permits miRNA expression profiling from a single cell, and allows analysis of a few cells from early embryos as well as individual cells (such as stem cells). It can also be used when only nanogram amounts of rare samples are available. The protocol can be completed in 7 d.
Genomics | 2014
Peter W.S. Hill; Rachel Amouroux; Petra Hajkova
Epigenetic reprogramming involves processes that lead to the erasure of epigenetic information, reverting the chromatin template to a less differentiated state. Extensive epigenetic reprogramming occurs both naturally during mammalian development in the early embryo and the developing germ line, and artificially in various in vitro reprogramming systems. Global DNA demethylation appears to be a shared attribute of reprogramming events, and understanding DNA methylation dynamics is thus of considerable interest. Recently, the Tet enzymes, which catalyse the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have emerged as potential drivers of epigenetic reprogramming. Although some of the recent studies point towards the direct role of Tet proteins in the removal of DNA methylation, the accumulating evidence suggests that the processes underlying DNA methylation dynamics might be more complex. Here, we review the current evidence, highlighting the agreements and the discrepancies between the suggested models and the experimental evidence.