Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra I. zur Lage is active.

Publication


Featured researches published by Petra I. zur Lage.


Neuron | 2000

amos, a Proneural Gene for Drosophila Olfactory Sense Organs that Is Regulated by lozenge

Sarah Goulding; Petra I. zur Lage; Andrew P. Jarman

In a variety of organisms, early neurogenesis requires the function of basic-helix-loop-helix (bHLH) transcription factors. For the Drosophila PNS, such transcription factors are encoded by the proneural genes (atonal and the achaete-scute complex, AS-C). We have identified a proneural gene, amos, that has strong similarity with atonal in its bHLH domain. We present evidence that amos is required for olfactory sensilla and is regulated by the prepattern gene lozenge. Between them, amos, atonal, and the AS-C can potentially account for the origin of the entire PNS.


Current Biology | 1997

Requirement for EGF receptor signalling in neural recruitment during formation of Drosophila chordotonal sense organ clusters

Petra I. zur Lage; Yuh Nung Jan; Andrew P. Jarman

BACKGROUND Drosophila proneural genes act in the process of selecting neural precursors from undifferentiated ectoderm. The proneural gene atonal is required for the development of precursors of both chordotonal organs (stretch receptors) and photoreceptors. Although these types of sensory element are dissimilar in structure and function, they both occur as organized arrays of neurons. Previous studies have shown that clustering of photoreceptors involves local recruitment, and that signalling by the Drosophila epidermal growth factor receptor (DER) pathway is involved in the recruitment process. We present evidence that a similar mechanism is required for the clustering of embryonic chordotonal organs. RESULTS We have examined the expression patterns of atonal and genes of the DER pathway in wild-type and mutant backgrounds. Expression of atonal was restricted to a subset of the atonal-requiring chordotonal precursors, which we call founder precursors. The remaining precursors required DER signalling for their selection. Signalling by the founder precursors was initiated by atonal activating, directly or indirectly, rhomboid expression in these cells. Signalling by these founder precursors then provoked a response in the surrounding ectodermal cells, as shown by the activation of expression of the DER target genes pointed and argos. The signal and response then led to recruitment of some of the ectodermal cells to the chordotonal precursor cell fate. DER hyperactivation by misexpression of rhomboid resulted in excessive chordotonal precursor recruitment. CONCLUSIONS Increased numbers of chordotonal precursors are recruited by homeogenetic induction involving signalling via DER from founder precursors to surrounding ectodermal cells. We suggest that the reason chordotonal organs and photoreceptors share a requirement for the proneural gene atonal is that this gene activates a common pathway leading to neural aggregation.


American Journal of Human Genetics | 2013

Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia

Daniel J. Moore; Alexandros Onoufriadis; Amelia Shoemark; Michael A. Simpson; Petra I. zur Lage; Sandra C.P. De Castro; Lucia Bartoloni; Giuseppe Gallone; Stavroula Petridi; Wesley J. Woollard; Dinu Antony; Miriam Schmidts; Teresa Didonna; Periklis Makrythanasis; Jeremy Bevillard; Nigel P. Mongan; Jana Djakow; Gerard Pals; Jane S. Lucas; June K. Marthin; Kim G. Nielsen; Federico Santoni; Michel Guipponi; Claire Hogg; Richard D. Emes; Eddie M. K. Chung; Nicholas D.E. Greene; Jean Louis Blouin; Andrew P. Jarman; Hannah M. Mitchison

Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects.


Molecular and Cellular Biology | 2004

The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites.

Lynn M. Powell; Petra I. zur Lage; David R. A. Prentice; Biruntha Senthinathan; Andrew P. Jarman

ABSTRACT For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors required for the genesis of Drosophila sense organ precursors (Atonal and Scute). We show that the proneural target gene, Bearded, is regulated by both Scute and Atonal via distinct E-box consensus binding sites. By comparing with other Ato-dependent enhancer sequences, we define an Ato-specific binding consensus that differs from the previously defined Scute-specific E-box consensus, thereby defining distinct EAto and ESc sites. These E-box variants are crucial for function. First, tandem repeats of 20-bp sequences containing EAto and ESc sites are sufficient to confer Atonal- and Scute-specific expression patterns, respectively, on a reporter gene in vivo. Second, interchanging EAto and ESc sites within enhancers almost abolishes enhancer activity. While the latter finding shows that enhancer context is also important in defining how proneural proteins interact with these sites, it is clear that differential utilization of DNA binding sites underlies proneural protein specificity.


Development | 2003

The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation

Petra I. zur Lage; David R. A. Prentice; Eimear E. Holohan; Andrew P. Jarman

Proneural genes encode basic-helix-loop-helix (bHLH) transcription factors required for neural precursor specification. Recently amos was identified as a new candidate Drosophila proneural gene related to atonal. Having isolated the first specific amos loss-of-function mutations, we show definitively that amos is required to specify the precursors of two classes of olfactory sensilla. Unlike other known proneural mutations, a novel characteristic of amos loss of function is the appearance of ectopic sensory bristles in addition to loss of olfactory sensilla, owing to the inappropriate function of scute. This supports a model of inhibitory interactions between proneural genes, whereby ato-like genes (amos and ato) must suppress sensory bristle fate as well as promote alternative sense organ subtypes.


PLOS Biology | 2011

The Gene Regulatory Cascade Linking Proneural Specification with Differentiation in Drosophila Sensory Neurons

Sebastián Cachero; T. Ian Simpson; Petra I. zur Lage; Lina Ma; Fay Newton; Eimear E. Holohan; J. Douglas Armstrong; Andrew P. Jarman

Temporal expression profiling of sensory precursor cells reveals how the atonal proneural transcription factor regulates a specialized neuronal differentiation pathway.


Developmental Cell | 2012

Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization

Fay Newton; Petra I. zur Lage; Somdatta Karak; Daniel J. Moore; Martin C. Göpfert; Andrew P. Jarman

Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them.


PLOS Genetics | 2014

HEATR2 plays a conserved role in assembly of the ciliary motile apparatus

Christine P. Diggle; Daniel J. Moore; Girish Mali; Petra I. zur Lage; Aouatef Ait-Lounis; Miriam Schmidts; Amelia Shoemark; Amaya Garcia Munoz; Mihail Halachev; Philippe Gautier; Patricia L. Yeyati; David T. Bonthron; Ian M. Carr; Bruce E. Hayward; Alexander F. Markham; Jilly Hope; Alex von Kriegsheim; Hannah M. Mitchison; Ian J. Jackson; Bénédicte Durand; Walter Reith; Eamonn Sheridan; Andrew P. Jarman; Pleasantine Mill

Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.


BMC Developmental Biology | 2006

Multiple enhancers contribute to spatial but not temporal complexity in the expression of the proneural gene, amos

Eimear E. Holohan; Petra I. zur Lage; Andrew P. Jarman

BackgroundThe regulation of proneural gene expression is an important aspect of neurogenesis. In the study of the Drosophila proneural genes, scute and atonal, several themes have emerged that contribute to our understanding of the mechanism of neurogenesis. First, spatial complexity in proneural expression results from regulation by arrays of enhancer elements. Secondly, regulation of proneural gene expression occurs in distinct temporal phases, which tend to be under the control of separate enhancers. Thirdly, the later phase of proneural expression often relies on positive autoregulation. The control of these phases and the transition between them appear to be central to the mechanism of neurogenesis. We present the first investigation of the regulation of the proneural gene, amos.ResultsAmos protein expression has a complex pattern and shows temporally distinct phases, in common with previously characterised proneural genes. GFP reporter gene constructs were used to demonstrate that amos has an array of enhancer elements up- and downstream of the gene, which are required for different locations of amos expression. However, unlike other proneural genes, there is no evidence for separable enhancers for the different temporal phases of amos expression. Using mutant analysis and site-directed mutagenesis of potential Amos binding sites, we find no evidence for positive autoregulation as an important part of amos control during neurogenesis.ConclusionFor amos, as for other proneural genes, a complex expression pattern results from the sum of a number of simpler sub-patterns driven by specific enhancers. There is, however, no apparent separation of enhancers for distinct temporal phases of expression, and this correlates with a lack of positive autoregulation. For scute and atonal, both these features are thought to be important in the mechanism of neurogenesis. Despite similarities in function and expression between the Drosophila proneural genes, amos is regulated in a fundamentally different way from scute and atonal.


BMC Developmental Biology | 2010

The function and regulation of the bHLH gene, cato, in Drosophila neurogenesis

Petra I. zur Lage; Andrew P. Jarman

BackgroundbHLH transcription factors play many roles in neural development. cousin of atonal (cato) encodes one such factor that is expressed widely in the developing sensory nervous system of Drosophila. However, nothing definitive was known of its function owing to the lack of specific mutations.ResultsWe characterised the expression pattern of cato in detail using newly raised antibodies and GFP reporter gene constructs. Expression is predominantly in sensory lineages that depend on the atonal and amos proneural genes. In lineages that depend on the scute proneural gene, cato is expressed later and seems to be particularly associated with the type II neurons. Consistent with this, we find evidence that cato is a direct target gene of Atonal and Amos, but not of Scute. We generated two specific mutations of cato. Mutant embryos show several defects in chordotonal sensory lineages, most notably the duplication of the sensory neuron, which appears to be caused by an extra cell division. In addition, we show that cato is required to form the single chordotonal organ that persists in atonal mutant embryos.ConclusionsWe conclude that although widely expressed in the developing PNS, cato is expressed and regulated very differently in different sensory lineages. Mutant phenotypes correlate with catos major expression in the chordotonal sensory lineage. In these cells, we propose that it plays roles in sense organ precursor maintenance and/or identity, and in controlling the number of cell divisions in the neuronal branch of the lineage arising from these precursors.

Collaboration


Dive into the Petra I. zur Lage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fay Newton

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Girish Mali

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge