Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Johannesson is active.

Publication


Featured researches published by Petra Johannesson.


Drug Discovery Today | 2009

Making medicinal chemistry more effective—application of Lean Sigma to improve processes, speed and quality

Shalini Andersson; Alan Armstrong; Annika Björe; Sue Bowker; Steve Chapman; Robert D. M. Davies; Craig S. Donald; Bryan J. Egner; Thomas Elebring; Sara Holmqvist; Tord Inghardt; Petra Johannesson; Magnus Johansson; Craig Johnstone; Paul D. Kemmitt; Jan Kihlberg; Pernilla Korsgren; Malin Lemurell; Jane E. Moore; Jonas Pettersson; Helen Pointon; Paul Schofield; Nidhal Selmi; Paul R.O. Whittamore

The pharmaceutical industry, particularly the small molecule domain, faces unprecedented challenges of escalating costs, high attrition as well as increasing competitive pressure from other companies and from new treatment modes such as biological products. In other industries, process improvement approaches, such as Lean Sigma, have delivered benefits in speed, quality and cost of delivery. Examining the medicinal chemistry contributions to the iterative improvement process of design-make-test-analyse from a Lean Sigma perspective revealed that major improvements could be made. Thus, the cycle times of synthesis, as well as compound analysis and purification, were reduced dramatically. Improvements focused on team, rather than individual, performance. These new ways of working have consequences for staff engagement, goals, rewards and motivation, which are also discussed.


Journal of Medicinal Chemistry | 2012

Design and optimization of pyrazinecarboxamide-based inhibitors of diacylglycerol acyltransferase 1 (DGAT1) leading to a clinical candidate dimethylpyrazinecarboxamide phenylcyclohexylacetic acid (AZD7687).

Jonas G. Barlind; Udo Bauer; Alan Martin Birch; Susan Birtles; Linda K. Buckett; Roger John Butlin; Robert D. M. Davies; Jan W. Eriksson; Clare D. Hammond; Ragnar Hovland; Petra Johannesson; Magnus J. Johansson; Paul D. Kemmitt; Bo T. Lindmark; Pablo Morentin Gutierrez; Tobias Noeske; Andreas Nordin; Charles O’Donnell; Annika U. Petersson; Alma Redzic; Andrew V. Turnbull; Johanna Vinblad

A new series of pyrazinecarboxamide DGAT1 inhibitors was designed to address the need for a candidate drug with good potency, selectivity, and physical and DMPK properties combined with a low predicted dose in man. Rational design and optimization of this series led to the discovery of compound 30 (AZD7687), which met the project objectives for potency, selectivity, in particular over ACAT1, solubility, and preclinical PK profiles. This compound showed the anticipated excellent pharmacokinetic properties in human volunteers.


Bioorganic & Medicinal Chemistry | 2011

Design of Small Molecule Inhibitors of Acetyl-Coa Carboxylase 1 and 2 Showing Reduction of Hepatic Malonyl-Coa Levels in Vivo in Obese Zucker Rats.

Christoffer Bengtsson; Stefan Blaho; David Blomberg Saitton; Kay Brickmann; Johan Broddefalk; Öjvind Davidsson; Tomas Drmota; Rutger H. A. Folmer; Kenth Hallberg; Stefan Hallén; Ragnar Hovland; Emre M. Isin; Petra Johannesson; Bengt Kull; Lars-Olof Larsson; Lars Löfgren; Kristina Nilsson; Tobias Noeske; Nick Oakes; Alleyn T. Plowright; Volker Schnecke; Pernilla Ståhlberg; Pernilla Sörme; Hong Wan; Eric Wellner; Linda Öster

Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability. X-ray crystallography has shown this series binding in the CT-domain of ACC2 and revealed two key hydrogen bonding interactions. Both 33 and 37 lower levels of hepatic malonyl-CoA in vivo in obese Zucker rats.


JCI insight | 2017

Involvement of the metabolic sensor GPR81 in cardiovascular control

Kristina Wallenius; Pia Thalén; Jan-Arne Björkman; Petra Johannesson; John Wiseman; Gerhard Böttcher; Ola Fjellström; Nicholas D. Oakes

GPR81 is a receptor for the metabolic intermediate lactate with an established role in regulating adipocyte lipolysis. Potentially novel GPR81 agonists were identified that suppressed fasting plasma free fatty acid levels in rodents and in addition improved insulin sensitivity in mouse models of insulin resistance and diabetes. Unexpectedly, the agonists simultaneously induced hypertension in rodents, including wild-type, but not GPR81-deficient mice. Detailed cardiovascular studies in anesthetized dogs showed that the pressor effect was associated with heterogenous effects on vascular resistance among the measured tissues: increasing in the kidney while remaining unchanged in hindlimb and heart. Studies in rats revealed that the pressor effect could be blocked, and the renal resistance effect at least partially blocked, with pharmacological antagonism of endothelin receptors. In situ hybridization localized GPR81 to the microcirculation, notably afferent arterioles of the kidney. In conclusion, these results provide evidence for a potentially novel role of GPR81 agonism in blood pressure control and regulation of renal vascular resistance including modulation of a known vasoeffector mechanism, the endothelin system. In addition, support is provided for the concept of fatty acid lowering as a means of improving insulin sensitivity.


Archive | 2008

Carbamoyl Compounds as DGAT1 Inhibitors 190

Petra Johannesson; Jan Magnus Johansson; Annika U. Petersson; Alan Martin Birch; Roger John Butlin


Archive | 2007

Sulfonamide derivatives for therapeutic use as fatty acid synthase inhibitors

Roger John Butlin; Peter William Rodney Caulkett; Petra Johannesson; Laurent Knerr; Andrew G. Leach; Nicholas John Newcombe; Charles John O'donnell; Helen Pointon


Journal of Medicinal Chemistry | 2016

Discovery of Second Generation Reversible Covalent DPP1 Inhibitors Leading to an Oxazepane Amidoacetonitrile Based Clinical Candidate (AZD7986)

Kevin James Doyle; Hans Lönn; Helena Käck; Amanda Van de Poël; Steve Swallow; Philip Gardiner; Stephen Connolly; James Root; Cecilia Wikell; Göran Dahl; Kristina Stenvall; Petra Johannesson


Archive | 2008

New Acetyl Coenzyme A Carboxylase (ACC) Inhibitors And Uses In Treatments Of Obesity And Diabetes Mellitus - 087

David Blomberg; Kay Brickmann; Anders Holmén; Ragnar Hovland; Petra Johannesson; Åsa Månsson; Alleyn T. Plowright; Volker Schnecke; Pernilla Sörme; Pernilla Ståhlberg; Eric Wellner


Archive | 2007

Bisamlde derivatives and use thereof as fatty acid synthase inhibitors

Jonas Boström; Kay Brickmann; Petra Johannesson; Laurent Knerr; Annika U. Petersson; Volker Schnecke; Christer Westerlund


Archive | 2007

Therapeutic Agents - 550

Roger John Butlin; Peter William Rodney Caulkett; Petra Johannesson; Laurent Knerr; Andrew G. Leach; Nicholas John Newcombe; Charles John O'donnell; Helen Pointon

Collaboration


Dive into the Petra Johannesson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Leach

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge