Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Kempná is active.

Publication


Featured researches published by Petra Kempná.


Annals of the New York Academy of Sciences | 2004

Vitamin E Mediates Cell Signaling and Regulation of Gene Expression

Angelo Azzi; René Gysin; Petra Kempná; Adelina Munteanu; Yesim Negis; Luis Villacorta; Theresa Visarius; Jean Marc Zingg

Abstract: α‐Tocopherol modulates two major signal transduction pathways centered on protein kinase C and phosphatidylinositol 3‐kinase. Changes in the activity of these key kinases are associated with changes in cell proliferation, platelet aggregation, and NADPH‐oxidase activation. Several genes are also regulated by tocopherols partly because of the effects of tocopherol on these two kinases, but also independently of them. These genes can be divided in five groups: Group 1. Genes that are involved in the uptake and degradation of tocopherols: α‐tocopherol transfer protein, cytochrome P450 (CYP3A), γ‐glutamyl‐cysteine synthetase heavy subunit, and glutathione‐S‐transferase. Group 2. Genes that are implicated with lipid uptake and atherosclerosis: CD36, SR‐BI, and SR‐AI/II. Group 3. Genes that are involved in the modulation of extracellular proteins: tropomyosin, collagen‐α‐1, MMP‐1, MMP‐19, and connective tissue growth factor. Group 4. Genes that are connected to adhesion and inflammation: E‐selectin, ICAM‐1 integrins, glycoprotein IIb, IL‐2, IL‐4, IL‐1b, and transforming growth factor‐β (TGF‐β). Group 5. Genes implicated in cell signaling and cell cycle regulation: PPAR‐γ, cyclin D1, cyclin E, Bcl2‐L1, p27, CD95 (APO‐1/Fas ligand), and 5a‐steroid reductase type 1. The transcription of p27, Bcl2, α‐tocopherol transfer protein, cytochrome P450 (CYP3A), γ‐glutamyl‐cysteine sythetase heavy subunit, tropomyosin, IL‐2, and CTGF appears to be upregulated by one or more tocopherols. All the other listed genes are downregulated. Gene regulation by tocopherols has been associated with protein kinase C because of its deactivation by α‐tocopherol and its contribution in the regulation of a number of transcription factors (NF‐κB, AP1). A direct participation of the pregnane X receptor (PXR) / retinoid X receptor (RXR) has been also shown. The antioxidant‐responsive element (ARE) and the TGF‐β‐responsive element (TGF‐β‐RE) appear in some cases to be implicated as well.


Biological Chemistry | 2004

Regulation of gene expression by α-tocopherol

Angelo Azzi; René Gysin; Petra Kempná; Adelina Munteanu; Luis Villacorta; Theresa Visarius; Jean Marc Zingg

Abstract Several genes are regulated by tocopherols which can be categorized, based on their function, into five groups: genes that are involved in the uptake and degradation of tocopherols (Group 1) include α-tocopherol transfer protein (α-TTP) and cytochrome P450 (CYP3A); genes that are associated with lipid uptake and atherosclerosis (Group 2) include CD36, SRBI and SRAI/II. Genes that modulate the expression of extracellular proteins (Group 3) include tropomyosin, collagenα1, MMP-1, MMP-19 and connective tissue growth factor (CTGF). Genes that are related to inflammation, cell adhesion and platelet aggregation (Group 4) include Eselectin, ICAM-1, integrins, glycoprotein IIb, Il-2, IL-4 and IL-β. Group 5 comprises genes coding for proteins involved in cell signaling and cell cycle regulation and consists of PPARγ, cyclin D1, cyclin E, Bcl2-L1, p27 and CD95 (Apo-1/Fas ligand). The expression of P27, Bcl2, α-TTP, CYP3A, tropomyosin, Il-2, PPAR-γ, and CTGF appears to be up-regulated by one or more tocopherols whereas all other listed genes are down-regulated. Several mechanisms may underlie tocopherol-dependent gene regulation. In some cases protein kinase C has been implicated due to its deactivation by α-tocopherol and its participation in the regulation of a number of transcription factors (NFκB, AP-1). In other cases a direct involvement of PXR/ RXR has been documented. The antioxidant responsive element (ARE) appears in some cases to be involved as well as the transforming growth factor β responsive element (TGF-β-RE). This heterogeneity of mediators of tocopherol action suggests the need of a common element that could be a receptor or a co-receptor, able to interact with tocopherol and with transcription factors directed toward specific regions of promoter sequences of sensitive genes. Here we review recent results of the search for molecular mechanisms underpinning the central signaling mechanism.


Molecular Aspects of Medicine | 2003

The role of α-tocopherol in preventing disease: from epidemiology to molecular events

Angelo Azzi; René Gysin; Petra Kempná; Roberta Ricciarelli; Luis Villacorta; Theresa Visarius; Jean Marc Zingg

Abstract The function of vitamin E has been attributed to its capacity to protect the organism against the attack of free radicals by acting as a lipid based radical chain breaking molecule. More recently, alternative non-antioxidant functions of vitamin E have been proposed and in particular that of a “gene regulator”. Effects of vitamin E have been observed at the level of mRNA or protein and could be consequent to regulation of gene transcription, mRNA stability, protein translation, protein stability and post-translational events. Given the high priority functions assigned to vitamin E, it can be speculated that it would be inefficient to consume it as a radical scavenger. Rather, it would be important to protect vitamin E through a network of cellular antioxidant defences, similarly to what occurs with proteins, nucleic acids and lipids.


Journal of Biological Chemistry | 2004

Inhibition of HMC-1 Mast Cell Proliferation by Vitamin E INVOLVEMENT OF THE PROTEIN KINASE B PATHWAY

Petra Kempná; Elke Reiter; Michel Arock; Angelo Azzi; Jean-Marc Zingg

The effects of four natural tocopherols on the proliferation and signaling pathways were examined in the human mastocytoma cell line (HMC-1). The four tocopherols inhibited HMC-1 cell proliferation with different potency (δ > α = γ > β). Growth inhibition correlated with the reduction of PKB (protein kinase B) phosphorylation by the different tocopherols. The reduction of PKB phosphorylation led to a decrease of its activity, as judged from a parallel reduction of GSKα/β phosphorylation. The translocation of PKB to the membrane, as a response to receptor stimulation by NGFβ, is also prevented by treatment with tocopherols. In the presence of PKC or PP2A inhibitors, the reduction of PKB phosphorylation by tocopherols was still observed, thus excluding the direct involvement of these enzymes. Other pathways, such as the Ras-stimulated ERK1/2 (extracellular signal responsive kinase) pathway, were not affected by tocopherol treatment. The tocopherols did not significantly change oxidative stress in HMC-1 cells, suggesting that the observed effects are not the result of a general reduction of oxidative stress. Thus, the tocopherols interfere with PKB phosphorylation and reduce proliferation of HMC-1 cells, possibly by modulating either phosphatidylinositol 3-kinase, a kinase phosphorylating PKB (PDK1/2), or a phosphatase that dephosphorylates it. Inhibition of proliferation and PKB signaling in HMC-1 cells by vitamin E suggests a role in preventing diseases with mast cell involvement, such as allergies, atherosclerosis, and tumorigenesis.


Free Radical Biology and Medicine | 2003

Cloning of novel human SEC14p-like proteins: ligand binding and functional properties

Petra Kempná; Jean-Marc Zingg; Roberta Ricciarelli; Markus Hierl; Smita Saxena; Angelo Azzi

We describe the cloning and expression of two novel genes highly similar to the tocopherol-associated protein (hTAP/SEC14L2/SPF). Immunoprecipitation of the three recombinant hTAPs and extraction of their associated lipid-soluble molecules indicates that they bind not just tocopherols, but also phosphatidylinositol, phosphatidylcholine, and phosphatidylglycerol. Ligand competition analysis by isoelectric point mobility shift assay indicates that phosphatidylcholine, tocopherols, and tocopheryl-succinate compete with phosphatidylinositol binding to hTAPs. To investigate a possible function of hTAPs on enzymes involved in phospholipids metabolism, the activity of recombinant phosphatidylinositol 3-kinase (PI3Kgamma/p110gamma) was tested. Recombinant hTAPs reduce in vitro the activity of the recombinant catalytic subunit of PI3Kgamma and stimulate it in the presence of alpha-tocopherol up to 5-fold. Immunoprecipitation of hTAP1 from cells results in co-precipitation of PI3-kinase activity, indicating a physical contact between the two proteins at a cellular level. In summary, hTAPs may modulate, in a tocopherol-sensitive manner, phosphatidylinositol-3-kinase, a central enzyme in signal transduction, cell proliferation, and apoptosis. It is possible that other phosphatidylinositol- and phosphatidylcholine-dependent signaling pathways are modulated by hTAPs and tocopherols, possibly by transporting and presenting these ligands to the corresponding enzymes.


Molecular Pharmacology | 2006

Pioglitazone inhibits androgen production in NCI-H295R cells by regulating gene expression of CYP17 and HSD3B2.

Petra Kempná; Gaby Hofer; Primus E. Mullis; Christa E. Flück

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3βHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor γ (PPARγ) is the nuclear receptor for TZDs, suppression of PPARγ by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARγ. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.


Best Practice & Research Clinical Endocrinology & Metabolism | 2008

Adrenal gland development and defects

Petra Kempná; Christa E. Flück

The network regulating human adrenal development is complex. Studies of patients with adrenal insufficiency due to gene mutations established a central role for transcription factors GLI3, SF1 and DAX1 in the initial steps of adrenal formation. Adrenal differentiation seems to depend on adrenocorticotropic hormone (ACTH) stimulation and signalling, including biosynthesis and action of POMC, PC1, TPIT, MC2R, MRAP and ALADIN, all of which cause adrenocortical hypoplasia when mutated in humans. Studies of knockout mice revealed many more factors involved in adrenal development; however, in contrast to rodents, in humans several of those factors had no adrenal phenotype when mutated (e.g. WT1, WNT4) or, alternatively, human mutations have not (yet) been identified. Tissue profiling of fetal and adult adrenals suggested 69 genes involved in adrenal development. Among them were genes coding for steroidogenic enzymes, transcription and growth factors, signalling molecules, regulators of cell cycle and angiogenesis, and extracellular matrix proteins; however, the exact role of most of them remains to be elucidated.


Journal of Endocrinology | 2009

Role of DNA methylation in the tissue-specific expression of the CYP17A1 gene for steroidogenesis in rodents

Elika Missaghian; Petra Kempná; Bernhard Dick; Andrea Hirsch; Rasoul Alikhani-Koupaei; Bernard Jégou; Primus E. Mullis; Brigitte M. Frey; Christa E. Flück

The CYP17A1 gene is the qualitative regulator of steroidogenesis. Depending on the presence or absence of CYP17 activities mineralocorticoids, glucocorticoids or adrenal androgens are produced. The expression of the CYP17A1 gene is tissue as well as species-specific. In contrast to humans, adrenals of rodents do not express the CYP17A1 gene and have therefore no P450c17 enzyme for cortisol production, but produce corticosterone. DNA methylation is involved in the tissue-specific silencing of the CYP17A1 gene in human placental JEG-3 cells. We investigated the role of DNA methylation for the tissue-specific expression of the CYP17A1 gene in rodents. Rats treated with the methyltransferase inhibitor 5-aza-deoxycytidine excreted the cortisol metabolite tetrahydrocortisol in their urine suggesting that treatment induced CYP17 expression and 17alpha-hydroxylase activity through demethylation. Accordingly, bisulfite modification experiments identified a methylated CpG island in the CYP17 promoter in DNA extracted from rat adrenals but not from testes. Both methyltransferase and histone deacetylase inhibitors induced the expression of the CYP17A1 gene in mouse adrenocortical Y1 cells which normally do not express CYP17, indicating that the expression of the mouse CYP17A1 gene is epigenetically controlled. The role of DNA methylation for CYP17 expression was further underlined by the finding that a reporter construct driven by the mouse -1041 bp CYP17 promoter was active in Y1 cells, thus excluding the lack of essential transcription factors for CYP17 expression in these adrenal cells.


Biochimie | 2008

Characterization of three human sec14p-like proteins: α-Tocopherol transport activity and expression pattern in tissues

Jean Marc Zingg; Petra Kempná; Marcel Paris; Elke Reiter; Luis Villacorta; Rita Cipollone; Adelina Munteanu; Clara De Pascale; Stefano Menini; Alexandra Cueff; Michel Arock; Angelo Azzi; Roberta Ricciarelli

Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.


Endocrinology | 2012

Metformin Inhibits Human Androgen Production by Regulating Steroidogenic Enzymes HSD3B2 and CYP17A1 and Complex I Activity of the Respiratory Chain

Andrea Hirsch; Dagmar Hahn; Petra Kempná; Gaby Hofer; Jean-Marc Nuoffer; Primus E. Mullis; Christa E. Flück

Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformins action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.

Collaboration


Dive into the Petra Kempná's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Primus E. Mullis

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge