Petra Kidd
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petra Kidd.
International Journal of Phytoremediation | 2015
Petra Kidd; Michel Mench; Vanessa Álvarez-López; Valérie Bert; Ioannis Dimitriou; Wolfgang Friesl-Hanl; Rolf Herzig; Jolien Janssen; Aliaksandr Kolbas; Ingo Müller; Silke Neu; Giancarlo Renella; Ann Ruttens; Jaco Vangronsveld; Markus Puschenreiter
The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization (“inactivation”) and plant-based (generally termed “phytoremediation”) options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.
Journal of Environmental Management | 2016
Sarah Jones; R. Paul Bardos; Petra Kidd; Michel Mench; Frans de Leij; Tony Hutchings; Andrew B. Cundy; Christopher Joyce; Gerhard Soja; Wolfgang Friesl-Hanl; Rolf Herzig; Pierre Menger
Contamination of soil with trace elements, such as Cu, is an important risk management issue. A pot experiment was conducted to determine the effects of three biochars and compost on plant growth and the immobilisation of Cu in a contaminated soil from a site formerly used for wood preservation. To assess Cu mobility, amended soils were analysed using leaching tests pre- and post-incubation, and post-growth. Amended and unamended soils were planted with sunflower, and the resulting plant material was assessed for yield and Cu concentration. All amendments significantly reduced leachable Cu compared to the unamended soil, however, the greatest reductions in leachable Cu were associated with the higher biochar application rate. The greatest improvements in plant yields were obtained with the higher application rate of biochar in combination with compost. The results suggest joint biochar and compost amendment reduces Cu mobility and can support biomass production on Cu-contaminated soils.
Science of The Total Environment | 2014
Jurate Kumpiene; Valérie Bert; Ioannis Dimitriou; Jan Eriksson; Wolfgang Friesl-Hanl; Rafal Galazka; Rolf Herzig; Jolien Janssen; Petra Kidd; Michel Mench; Ingo Müller; Silke Neu; Nadège Oustriere; Markus Puschenreiter; Giancarlo Renella; Pierre-Hervé Roumier; Grzegorz Siebielec; Jaco Vangronsveld; Nicolas Manier
During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities.
Applied and Environmental Microbiology | 2013
Cristina Becerra-Castro; Petra Kidd; Melanie Kuffner; Ángeles Prieto-Fernández; Stephan Hann; Carmela Monterroso; Angela Sessitsch; Walter W. Wenzel; Markus Puschenreiter
ABSTRACT The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants.
Journal of Environmental Quality | 2016
María Balseiro-Romero; Panagiotis Gkorezis; Petra Kidd; Jaco Vangronsveld; Carmen Monterroso
The association of plants and rhizospheric bacteria provides a successful strategy to clean up contaminated soils. The purpose of this work was to enhance diesel degradation in rhizosphere by inoculation with selected bacterial strains: a diesel degrader (D), plant growth-promoting (PGP) strains, or a combination (D+PGP). Plants were set up in pots with the A or B horizon of an umbric Cambisol (A and B) spiked with diesel (1.25%, w/w). After 1 mo, the dissipation of diesel range organics (DRO) with respect to = 0 (i.e., 1 wk after preparing the pots with the seedlings) concentration was significantly higher in inoculated than in noninoculated (NI) pots: The highest DRO losses were found in A D+PGP pots (close to 15-20% higher than NI) and in B D pots (close to 10% higher). The water-extractable DRO fraction was significantly higher at = 30 d (15-25%) compared with = 0 (<5%), probably due to the effects of plant root exudates and biosurfactants produced by the degrader strain. The results of this experiment reflect the importance of the partnerships between plants and bacterial inoculants and demonstrate the relevance of the effect of bacterial biosurfactants and plant root exudates on contaminant bioavailability, a key factor for enhancing diesel rhizodegradation. The association of lupine with D and PGP strains resulted in a promising combination for application in the rhizoremediation of soils with moderate diesel contamination.
Plant and Soil | 2016
Vanessa Álvarez-López; Ángeles Prieto-Fernández; Cristina Becerra-Castro; Carmela Monterroso; Petra Kidd
AimPlant-associated bacteria can improve phytoextraction by increasing plant growth and/or metal uptake. This study aimed to characterise the culturable rhizobacterial community associated with two Ni-hyperaccumulators and to obtain a collection of isolates for application in Ni phytomining.MethodsNon-vegetated and rhizosphere soil samples were collected from the Ni-hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum (three populations) and Alyssum serpyllifolium ssp. malacitanum (one population), as well as from non-hyperaccumulating plants (Dactylis glomerata, Santolina semidentata and Alyssum serpyllifolium ssp. serpyllifolium). Rhizobacteria were isolated and characterised genotypically (BOX-PCR, 16S rDNA sequencing) and phenotypically (Ni tolerance, plant growth promoting (PGP) traits, biosurfactant production).ResultsHyperaccumulating Alyssum subspecies hosted higher densities of bacteria compared to either non-hyperaccumulators or non-vegetated soil. In some cases hyperaccumulators showed selective enrichment of Ni-tolerant bacteria. Most bacterial strains belonged to the Actinobacteria phylum and presented Ni resistance. Phosphorus-solubilisers were mostly associated with the hyperaccumulators, siderophore-producers with D. glomerata, and IAA-producers with both these species.ConclusionTaxonomic diversity and phenotypic characteristics were soil-, plant species- and plant population-specific. Moreover, differences were observed between the two Ni-hyperaccumulating subspecies and amongst plant populations. Several strains presented PGP characteristics which could be useful when selecting microorganisms for bioaugmentation trials.
Science of The Total Environment | 2017
Celestino Quintela-Sabarís; Lilian Marchand; Petra Kidd; Wolfgang Friesl-Hanl; Markus Puschenreiter; Jurate Kumpiene; Ingo Müller; Silke Neu; Jolien Janssen; Jaco Vangronsveld; Ioannis Dimitriou; Grzegorz Siebielec; Rafał Gałązka; Valérie Bert; Rolf Herzig; Andrew B. Cundy; Nadège Oustriere; Aliaksandr Kolbas; William Galland; Michel Mench
Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.
International Journal of Phytoremediation | 2014
María Balseiro-Romero; Petra Kidd; Carmela Monterroso
Vegetation and its associated microorganisms play an important role in the behaviour of soil contaminants. One of the most important elements is root exudation, since it can affect the mobility, and therefore, the bioavailability of soil contaminants. In this study, we evaluated the influence of root exudates on the mobility of fuel derived compounds in contaminated soils. Samples of humic acid, montmorillonite, and an A horizon from an alumi-umbric Cambisol were contaminated with volatile contaminants present in fuel: oxygenates (MTBE and ETBE) and monoaromatic compounds (benzene, toluene, ethylbenzene and xylene). Natural root exudates obtained from Holcus lanatus and Cytisus striatus and ten artificial exudates (components frequently found in natural exudates) were added to the samples, individually and as a mixture, to evaluate their effects on contaminant mobility. Fuel compounds were analyzed by headspace-gas chromatography-mass spectrometry. In general, the addition of natural and artificial exudates increased the mobility of all contaminants in humic acid. In A horizon and montmorillonite, natural or artificial exudates (as a mixture) decreased the contaminant mobility. However, artificial exudates individually had different effects: carboxylic components increased and phenolic components decreased the contaminant mobility. These results established a base for developing and improving phytoremediation processes of fuel-contaminated soils.
Zeitschrift für Naturforschung C | 2005
Celestino Quintela-Sabarís; Petra Kidd; María Fraga
Abstract The genetic diversity of Cistus ladanifer ssp. ladanifer (Cistaceae) growing on ultramafic and non-ultramafic (basic and schists) soils in the NE of Portugal was studied in order to identify molecular markers that could distinguish the metal-tolerant ecotypes of this species. Random Amplified Polymorphic DNA (RAPD) markers were used in order to estimate genetic variation and differences between populations. The RAPD dataset was analysed by means of a cluster analysis and an analysis of molecular variance (AMOVA). Our results indicate a significant partitioning of molecular variance between ultramafic and non-ultramafic populations of Cistus ladanifer, although the highest percentage of this variance was found at the intra-population level. Mantel’s test showed no relationship between inter-population genetic and geographic distances. A series of RAPD bands that could be related to heavy metal tolerance were observed. The identification of such markers will enable the use of Cistus ladanifer in phytoremediation procedures.
Phytoremediation Rhizoremediation | 2006
Jean-Paul Schwitzguébel; Joana Meyer; Petra Kidd
Phytoremediation has been defined as the use of green plants and their associated microorganisms, soil amendments and agronomic techniques to remove, contain or render harmless environmental contaminants. Plants can either accumulate and metabolise organic pollutants (phytodegradation) or stimulate appropriate rhizospheric microorganisms (phytostimulation). Both approaches have been explored to remediate soils contaminated with pesticides.