Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Pennekamp is active.

Publication


Featured researches published by Petra Pennekamp.


Current Biology | 2002

The Ion Channel Polycystin-2 Is Required for Left-Right Axis Determination in Mice

Petra Pennekamp; Christina Karcher; Anja Fischer; Axel Schweickert; Boris V. Skryabin; Jürgen Horst; Martin Blum; Bernd Dworniczak

Generation of laterality depends on a pathway which involves the asymmetrically expressed genes nodal, Ebaf, Leftb, and Pitx2. In mouse, node monocilia are required upstream of the nodal cascade. In chick and frog, gap junctions are essential prior to node/organizer formation. It was hypothesized that differential activity of ion channels gives rise to unidirectional transfer through gap junctions, resulting in asymmetric gene expression. PKD2, which if mutated causes autosomal dominant polycystic kidney disease (ADPKD) in humans, encodes the calcium release channel polycystin-2. We have generated a knockout allele of Pkd2 in mouse. In addition to malformations described previously, homozygous mutant embryos showed right pulmonary isomerism, randomization of embryonic turning, heart looping, and abdominal situs. Leftb and nodal were not expressed in the left lateral plate mesoderm (LPM), and Ebaf was absent from floorplate. Pitx2 was bilaterally expressed in posterior LPM but absent anteriorly. Pkd2 was ubiquitously expressed at headfold and early somite stages, with higher levels in floorplate and notochord. The embryonic midline, however, was present, and normal levels of Foxa2 and shh were expressed, suggesting that polycystin-2 acts downstream or in parallel to shh and upstream of the nodal cascade.


Science | 2012

Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2.

Satoko Yoshiba; Hidetaka Shiratori; Ivana Y. Kuo; Aiko Kawasumi; Kyosuke Shinohara; Shigenori Nonaka; Yasuko Asai; Genta Sasaki; José António Belo; Hiroshi Sasaki; Junichi Nakai; Bernd Dworniczak; Barbara E. Ehrlich; Petra Pennekamp; Hiroshi Hamada

Distinguishing Right from Left In most vertebrates during embryonic development, rotational movement of the cilia within a structure in the embryo, known as the node, generates unidirectional flow required for future left-right asymmetry of the internal organs. The flow may transport a determinant molecule or provide mechanical force. However, it is not clear how the flow is sensed. Yoshiba et al. (p. 226, published online 13 September; see the Perspective by Norris and Grimes) show that nodal flow in mouse embryos is sensed by the cilia of perinodal cells located at the edge of the node, in a manner dependent on Pkd2, a Ca2+-permeable cation channel that has been implicated in polycystic kidney disease in humans. A Ca2+ channel implicated in polycystic kidney disease helps to establish the left-right body axis of the mammalian embryo. Unidirectional fluid flow plays an essential role in the breaking of left-right (L-R) symmetry in mouse embryos, but it has remained unclear how the flow is sensed by the embryo. We report that the Ca2+ channel Polycystin-2 (Pkd2) is required specifically in the perinodal crown cells for sensing the nodal flow. Examination of mutant forms of Pkd2 shows that the ciliary localization of Pkd2 is essential for correct L-R patterning. Whereas Kif3a mutant embryos, which lack all cilia, failed to respond to an artificial flow, restoration of primary cilia in crown cells rescued the response to the flow. Our results thus suggest that nodal flow is sensed in a manner dependent on Pkd2 by the cilia of crown cells located at the edge of the node.


Nature Genetics | 2013

DYX1C1 is required for axonemal dynein assembly and ciliary motility

Aarti Tarkar; Niki T. Loges; Christopher E. Slagle; Richard Francis; Gerard W. Dougherty; Joel V. Tamayo; Brett A. Shook; Marie E. Cantino; D. A. Schwartz; Charlotte Jahnke; Heike Olbrich; Claudius Werner; Johanna Raidt; Petra Pennekamp; Marouan Abouhamed; Rim Hjeij; Gabriele Köhler; Matthias Griese; You Li; Kristi Lemke; Nikolas Klena; Xiaoqin Liu; George C. Gabriel; Kimimasa Tobita; Martine Jaspers; Lucy Morgan; Adam J. Shapiro; Stef J.F. Letteboer; Dorus A. Mans; Johnny L. Carson

DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).


Nature Genetics | 2013

The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans

Maureen Wirschell; Heike Olbrich; Claudius Werner; Douglas Tritschler; Raqual Bower; Winfield S. Sale; Niki T. Loges; Petra Pennekamp; Sven Lindberg; Unne Stenram; Birgitta Carlén; Elisabeth Horak; Gabriele Köhler; Peter Nürnberg; Gudrun Nürnberg; Mary E. Porter; Heymut Omran

Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.


Clinical Journal of The American Society of Nephrology | 2010

Immunosuppression and Renal Outcome in Congenital and Pediatric Steroid-Resistant Nephrotic Syndrome

Anja K. Büscher; Birgitta Kranz; Rainer Büscher; Friedhelm Hildebrandt; Bernd Dworniczak; Petra Pennekamp; Eberhard Kuwertz-Bröking; Anne-Margret Wingen; Ulrike John; Markus J. Kemper; L.A.H. Monnens; Peter F. Hoyer; Stefanie Weber; Martin Konrad

BACKGROUND AND OBJECTIVES Mutations in podocyte genes are associated with steroid-resistant nephrotic syndrome (SRNS), mostly affecting younger age groups. To date, it is unclear whether these patients benefit from intensified immunosuppression with cyclosporine A (CsA). The aim of this study was to evaluate the influence of podocyte gene defects in congenital nephrotic syndrome (CNS) and pediatric SRNS on the efficacy of CsA therapy and preservation of renal function. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS Genotyping was performed in 91 CNS/SRNS patients, irrespective of age at manifestation or response to CsA. RESULTS Mutations were identified in 52% of families (11 NPHS1, 17 NPHS2, 11 WT1, 1 LAMB2, 3 TRPC6). Sixty-eight percent of patients with nongenetic SRNS responded to CsA, most of them achieved complete remission. In contrast, none of the patients with genetic CNS/SRNS experienced a complete remission and only two (17%) achieved a partial response, both affected by a WT1 mutation. Preservation of renal function was significantly better in children with nongenetic disease after a mean follow-up time of 8.6 years (ESRD in 29% versus 71%). CONCLUSIONS The mutation detection rate in our population was high (52%). Most patients with genetic CNS/SRNS did not benefit from CsA with significantly lower response rates compared with nongenetic patients and showed rapid progression to end-stage renal failure. These data strongly support the idea not to expose CNS/SRNS patients with inherited defects related to podocyte function to intensified immunosuppression with CsA.


Nature Genetics | 2014

Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia

Julia Wallmeier; Dalal A Al-Mutairi; Chun-Ting Chen; Niki T. Loges; Petra Pennekamp; Tabea Menchen; Lina Ma; Hanan E. Shamseldin; Heike Olbrich; Gerard W. Dougherty; Claudius Werner; Basel H Alsabah; Gabriele Köhler; Martine Jaspers; Mieke Boon; Matthias Griese; Sabina Schmitt-Grohé; Theodor Zimmermann; Cordula Koerner-Rettberg; Elisabeth Horak; Chris Kintner; Fowzan S. Alkuraya; Heymut Omran

Using a whole-exome sequencing strategy, we identified recessive CCNO (encoding cyclin O) mutations in 16 individuals suffering from chronic destructive lung disease due to insufficient airway clearance. Respiratory epithelial cells showed a marked reduction in the number of multiple motile cilia (MMC) covering the cell surface. The few residual cilia that correctly expressed axonemal motor proteins were motile and did not exhibit obvious beating defects. Careful subcellular analyses as well as in vitro ciliogenesis experiments in CCNO-mutant cells showed defective mother centriole generation and placement. Morpholino-based knockdown of the Xenopus ortholog of CCNO also resulted in reduced MMC and centriole numbers in embryonic epidermal cells. CCNO is expressed in the apical cytoplasm of multiciliated cells and acts downstream of multicilin, which governs the generation of multiciliated cells. To our knowledge, CCNO is the first reported gene linking an inherited human disease to reduced MMC generation due to a defect in centriole amplification and migration.


American Journal of Human Genetics | 2013

ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

Maimoona A. Zariwala; Heon Yung Gee; Małgorzata Kurkowiak; Dalal A Al-Mutairi; Margaret W. Leigh; Toby W. Hurd; Rim Hjeij; Sharon D. Dell; Moumita Chaki; Gerard W. Dougherty; Mohamed Adan; Philip Spear; Julian Esteve-Rudd; Niki T. Loges; Margaret Rosenfeld; Katrina A. Diaz; Heike Olbrich; Whitney E. Wolf; Eamonn Sheridan; Trevor Batten; Jan Halbritter; Jonathan D. Porath; Stefan Kohl; Svjetlana Lovric; Daw Yang Hwang; Jessica E. Pittman; Kimberlie A. Burns; Thomas W. Ferkol; Scott D. Sagel; Kenneth N. Olivier

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


American Journal of Human Genetics | 2013

ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry.

Rim Hjeij; Anna Lindstrand; Richard Francis; Maimoona A. Zariwala; Xiaoqin Liu; You Li; Rama Rao Damerla; Gerard W. Dougherty; Marouan Abouhamed; Heike Olbrich; Niki T. Loges; Petra Pennekamp; Erica E. Davis; Claudia M.B. Carvalho; Davut Pehlivan; Claudius Werner; Johanna Raidt; Gabriele Köhler; Karsten Häffner; Miguel Reyes-Múgica; James R. Lupski; Margaret W. Leigh; Margaret Rosenfeld; Lucy Morgan; Cecilia W. Lo; Nicholas Katsanis; Heymut Omran

The motive forces for ciliary movement are generated by large multiprotein complexes referred to as outer dynein arms (ODAs), which are preassembled in the cytoplasm prior to transport to the ciliary axonemal compartment. In humans, defects in structural components, docking complexes, or cytoplasmic assembly factors can cause primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease and defects in laterality. By using combined high resolution copy-number variant and mutation analysis, we identified ARMC4 mutations in twelve PCD individuals whose cells showed reduced numbers of ODAs and severely impaired ciliary beating. Transient suppression in zebrafish and analysis of an ENU mouse mutant confirmed in both model organisms that ARMC4 is critical for left-right patterning. We demonstrate that ARMC4 is an axonemal protein that is necessary for proper targeting and anchoring of ODAs.


American Journal of Human Genetics | 2013

Mutations in SPAG1 Cause Primary Ciliary Dyskinesia Associated with Defective Outer and Inner Dynein Arms

Lawrence E. Ostrowski; Niki T. Loges; Toby W. Hurd; Margaret W. Leigh; Whitney E. Wolf; Johnny L. Carson; Milan J. Hazucha; Weining Yin; Stephanie D. Davis; Sharon D. Dell; Thomas W. Ferkol; Scott D. Sagel; Kenneth N. Olivier; Charlotte Jahnke; Heike Olbrich; Claudius Werner; Johanna Raidt; Julia Wallmeier; Petra Pennekamp; Gerard W. Dougherty; Rim Hjeij; Heon Yung Gee; Edgar A. Otto; Jan Halbritter; Moumita Chaki; Katrina A. Diaz; Daniela A. Braun; Jonathan D. Porath; Markus Schueler; György Baktai

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.


European Respiratory Journal | 2014

Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia

Johanna Raidt; Julia Wallmeier; Rim Hjeij; Jörg Große Onnebrink; Petra Pennekamp; Niki T. Loges; Heike Olbrich; Karsten Häffner; Gerard W. Dougherty; Heymut Omran; Claudius Werner

Primary ciliary dyskinesia (PCD) is a rare genetic disorder leading to recurrent respiratory tract infections. High-speed video-microscopy analysis (HVMA) of ciliary beating, currently the first-line diagnostic tool for PCD in most centres, is challenging because recent studies have expanded the spectrum of HVMA findings in PCD from grossly abnormal to very subtle. The objective of this study was to describe the diversity of HVMA findings in genetically confirmed PCD individuals. HVMA was performed as part of the routine work-up of individuals with suspected PCD. Subsequent molecular analysis identified biallelic mutations in the PCD-related genes of 66 individuals. 1072 videos of these subjects were assessed for correlation with the genotype. Biallelic mutations (19 novel) were found in 17 genes: DNAI1, DNAI2, DNAH5, DNAH11, CCDC103, ARMC4, KTU/DNAAF2, LRRC50/DNAAF1, LRRC6, DYX1C1, ZMYND10, CCDC39, CCDC40, CCDC164, HYDIN, RSPH4A and RSPH1. Ciliary beat pattern variations correlated well with the genetic findings, allowing the classification of typical HVMA findings for different genetic groups. In contrast, analysis of ciliary beat frequency did not result in additional diagnostic impact. In conclusion, this study provides detailed knowledge about the diversity of HVMA findings in PCD and may therefore be seen as a guide to the improvement of PCD diagnostics. PCD is associated with a variety of ciliary beat pattern abnormalities which correlate with genetic subtypes http://ow.ly/zh5jP

Collaboration


Dive into the Petra Pennekamp's collaboration.

Top Co-Authors

Avatar

Niki T. Loges

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Claudius Werner

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Heike Olbrich

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heymut Omran

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Wallmeier

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Johanna Raidt

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Rim Hjeij

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tabea Menchen

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge