Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Szoleczky is active.

Publication


Featured researches published by Petra Szoleczky.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function

Kunihiro Suzuki; Gabor Olah; Katalin Módis; Ciro Coletta; Gabriella Kulp; Domokos Gero; Petra Szoleczky; Tuanjie Chang; Zongmin Zhou; Lingyun Wu; Rui Wang; Andreas Papapetropoulos; Csaba Szabó

The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H2S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro “hyperglycemia”) induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H2S. Replacement of H2S or overexpression of the H2S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H2S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H2S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE−/− mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H2S; replacement of H2S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H2S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H2S catabolism form a positive feed-forward cycle. H2S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.


Biochemical Pharmacology | 2012

Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress

Katalin Módis; Domokos Gerő; Katalin Erdélyi; Petra Szoleczky; Douglas S. DeWitt; Csaba Szabó

PURPOSE The goal of the current studies was to elucidate the role of the principal poly(ADP-ribose)polymerase isoform, PARP1 in the regulation of cellular energetics in endothelial cells under resting conditions and during oxidative stress. METHODS We utilized bEnd.3 endothelial cells and A549 human transformed epithelial cells. PARP1 was inhibited either by pharmacological inhibitors or by siRNA silencing. The Seahorse XF24 Extracellular Flux Analyzer was used to measure indices of mitochondrial respiration (oxygen consumption rate) and of glycolysis (extracellular acidification rate). Cell viability, cellular and mitochondrial NAD(+) levels and mitochondrial biogenesis were also measured. RESULTS Silencing of PARP1 increased basal cellular parameters of oxidative phosphorylation, providing direct evidence that PARP1 is a regulator of mitochondrial function in resting cells. Pharmacological inhibitors of PARP1 and siRNA silencing of PARP1 protected against the development of mitochondrial dysfunction and elevated the respiratory reserve capacity in endothelial and epithelial cells exposed to oxidative stress. The observed effects were unrelated to an effect on mitochondrial biogenesis. Isolated mitochondria of A549 human transformed epithelial cells exhibited an improved resting bioenergetic status after stable lentiviral silencing of PARP1; these effects were associated with elevated resting mitochondrial NAD+ levels in PARP1 silenced cells. CONCLUSIONS PARP1 is a regulator of basal cellular energetics in resting endothelial and epithelial cells. Furthermore, endothelial cells respond with a decrease in their mitochondrial reserve capacity during low-level oxidative stress, an effect, which is attenuated by PARP1 inhibition. While PARP1 is a regulator of oxidative phosphorylation in resting and oxidatively stressed cells, it only exerts a minor effect on glycolysis.


British Journal of Pharmacology | 2009

Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis

Katalin Módis; Domokos Gero; Nóra Nagy; Petra Szoleczky; Zoltán Dóri Tóth; Csaba Szabó

Background and purpose:  We have established an in vitro model of acute tubular necrosis in rat kidney tubular cells, using combined oxygen‐glucose deprivation (COGD) and screened a library of 1280 pharmacologically active compounds for cytoprotective effects.


Diabetes | 2013

Cell-Based Screening Identifies Paroxetine as an Inhibitor of Diabetic Endothelial Dysfunction

Domokos Gero; Petra Szoleczky; Kunihiro Suzuki; Katalin Módis; Gabor Olah; Ciro Coletta; Csaba Szabó

We have conducted a phenotypic screening in endothelial cells exposed to elevated extracellular glucose (an in vitro model of hyperglycemia) to identify compounds that prevent hyperglycemia-induced reactive oxygen species (ROS) formation without adversely affecting cell viability. From a focused library of >6,000 clinically used drug-like and pharmacologically active compounds, several classes of active compounds emerged, with a confirmed hit rate of <0.5%. Follow-up studies focused on paroxetine, a clinically used antidepressant compound that has not been previously implicated in the context of hyperglycemia or diabetes. Paroxetine reduced hyperglycemia-induced mitochondrial ROS formation, mitochondrial protein oxidation, and mitochondrial and nuclear DNA damage, without interfering with mitochondrial electron transport or cellular bioenergetics. The ability of paroxetine to improve hyperglycemic endothelial cell injury was unique among serotonin reuptake blockers and can be attributed to its antioxidant effect, which primarily resides within its sesamol moiety. Paroxetine maintained the ability of vascular rings to respond to the endothelium-dependent relaxant acetylcholine, both during in vitro hyperglycemia and ex vivo, in a rat model of streptozotocin-induced diabetes. Thus, the current work identifies a novel pharmacological action of paroxetine as a protector of endothelial cells against hyperglycemic injury and raises the potential of repurposing of this drug for the experimental therapy of diabetic cardiovascular complications.


PLOS ONE | 2013

Identification of Pharmacological Modulators of HMGB1- Induced Inflammatory Response by Cell-Based Screening

Domokos Gero; Petra Szoleczky; Katalin Módis; John P. Pribis; Yousef Al-Abed; Huan Yang; Sangeeta Chevan; Timothy R. Billiar; Kevin J. Tracey; Csaba Szabó

High mobility group box 1 (HMGB1), a highly conserved, ubiquitous protein, is released into the circulation during sterile inflammation (e.g. arthritis, trauma) and circulatory shock. It participates in the pathogenesis of delayed inflammatory responses and organ dysfunction. While several molecules have been identified that modulate the release of HMGB1, less attention has been paid to identify pharmacological inhibitors of the downstream inflammatory processes elicited by HMGB1 (C23-C45 disulfide C106 thiol form). In the current study, a cell-based medium-throughput screening of a 5000+ compound focused library of clinical drugs and drug-like compounds was performed in murine RAW264.7 macrophages, in order to identify modulators of HMGB1-induced tumor-necrosis factor alpha (TNFα) production. Clinically used drugs that suppressed HMGB1-induced TNFα production included glucocorticoids, beta agonists, and the anti-HIV compound indinavir. A re-screen of the NIH clinical compound library identified beta-agonists and various intracellular cAMP enhancers as compounds that potentiate the inhibitory effect of glucocorticoids on HMGB1-induced TNFα production. The molecular pathways involved in this synergistic anti-inflammatory effect are related, at least in part, to inhibition of TNFα mRNA synthesis via a synergistic suppression of ERK/IκB activation. Inhibition of TNFα production by prednisolone+salbutamol pretreatment was also confirmed in vivo in mice subjected to HMGB1 injection; this effect was more pronounced than the effect of either of the agents administered separately. The current study unveils several drug-like modulators of HMGB1-mediated inflammatory responses and offers pharmacological directions for the therapeutic suppression of inflammatory responses in HMGB1-dependent diseases.


Archives of Biochemistry and Biophysics | 2012

Identification of agents that reduce renal hypoxia–reoxygenation injury using cell-based screening: Purine nucleosides are alternative energy sources in LLC-PK1 cells during hypoxia

Petra Szoleczky; Katalin Módis; Nóra Nagy; Zoltán Dóri Tóth; Douglas S. DeWitt; Csaba Szabó; Domokos Gerő

Acute tubular necrosis is a clinical problem that lacks specific therapy and is characterized by high mortality rate. The ischemic renal injury affects the proximal tubule cells causing dysfunction and cell death after severe hypoperfusion. We utilized a cell-based screening approach in a hypoxia-reoxygenation model of tubular injury to search for cytoprotective action using a library of pharmacologically active compounds. Oxygen-glucose deprivation (OGD) induced ATP depletion, suppressed aerobic and anaerobic metabolism, increased the permeability of the monolayer, caused poly(ADP-ribose) polymerase cleavage and caspase-dependent cell death. The only compound that proved cytoprotective either applied prior to the hypoxia induction or during the reoxygenation was adenosine. The protective effect of adenosine required the coordinated actions of adenosine deaminase and adenosine kinase, but did not requisite the purine receptors. Adenosine and inosine better preserved the cellular ATP content during ischemia than equimolar amount of glucose, and accelerated the restoration of the cellular ATP pool following the OGD. Our results suggest that radical changes occur in the cellular metabolism to respond to the energy demand during and following hypoxia, which include the use of nucleosides as an essential energy source. Thus purine nucleoside supplementation holds promise in the treatment of acute renal failure.


Molecular Medicine | 2014

Modulation of poly(ADP-ribose) polymerase-1 (PARP-1)-mediated oxidative cell injury by ring finger protein 146 (RNF146) in cardiac myocytes.

Domokos Gero; Petra Szoleczky; Athanasia Chatzianastasiou; Andreas Papapetropoulos; Csaba Szabó

Poly(ADP-ribose) polymerase-1 (PARP-1) activation is a hallmark of oxidative stress-induced cellular injury that can lead to energetic failure and necrotic cell death via depleting the cellular nicotinamide adenine dinucleotide (NAD+) and ATP pools. Pharmacological PARP-1 inhibition or genetic PARP-1 deficiency exert protective effects in multiple models of cardiomyocyte injury. However, the connection between nuclear PARP-1 activation and depletion of the cytoplasmic and mitochondrial energy pools is poorly understood. By using cultured rat cardiomyocytes, here we report that ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, acts as a direct interactor of PARP-1. Overexpression of RNF146 exerts protection against oxidant-induced cell death, whereas PARP-1-mediated cellular injury is augmented after RNF146 silencing. RNF146 translocates to the nucleus upon PARP-1 activation, triggering the exit of PARP-1 from the nucleus, followed by rapid degradation of both proteins. PARP-1 and RNF146 degradation occurs in the early phase of myocardial ischemia-reperfusion injury; it precedes the induction of heat shock protein expression. Taken together, PARP-1 release from the nucleus and its rapid degradation represent newly identified steps of the necrotic cell death program induced by oxidative stress. These steps are controlled by the ubiquitin-proteasome pathway protein RNF146. The current results shed new light on the mechanism of necrotic cell death. RNF146 may represent a distinct target for experimental therapeutic intervention of oxidant-mediated cardiac injury.


Pharmacological Research | 2016

Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer

Nadiya Druzhyna; Bartosz Szczesny; Gabor Olah; Katalin Módis; Antonia Asimakopoulou; Athanasia Pavlidou; Petra Szoleczky; Domokos Gero; Kazunori Yanagi; Gabor Törö; Isabel López‐García; Vassilios Myrianthopoulos; Emmanuel Mikros; John R. Zatarain; Celia Chao; Andreas Papapetropoulos; Mark R. Hellmich; Csaba Szabó

Abstract Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the ‘Killer Plates’ collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: ∼60μM), tannic acid (IC50: ∼40μM) and benserazide (IC50: ∼30μM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: ∼3μM) and NSC67078 (IC50: ∼1μM), while aurintricarboxylic acid (IC50: ∼3μM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: ∼1μM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of ∼6μM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: ∼6μM), tannic acid (IC50: ∼20μM), benserazide (IC50: ∼20μM), and NSC67078 (IC50: ∼0.3μM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: ∼300μM). In contrast, although a CBS inhibitor in the cell-free assay, aurintricarboxylic acid failed to inhibit HCT116 proliferation at lower concentrations, and stimulated cell proliferation at 300μM. Copper-containing compounds present in the libraries, were also found to be potent inhibitors of recombinant CBS; however this activity was due to the CBS inhibitory effect of copper ions themselves. However, copper ions, up to 300μM, did not inhibit HCT116 cell proliferation. Benserazide was only a weak inhibitor of the activity of the other H2S-generating enzymes CSE and 3-MST activity (16% and 35% inhibition at 100μM, respectively) in vitro. Benserazide suppressed HCT116 mitochondrial function and inhibited proliferation of the high CBS-expressing colon cancer cell line HT29, but not the low CBS-expressing line, LoVo. The major benserazide metabolite 2,3,4-trihydroxybenzylhydrazine also inhibited CBS activity and suppressed HCT116 cell proliferation in vitro. In an in vivo study of nude mice bearing human colon cancer cell xenografts, benserazide (50mg/kg/days.q.) prevented tumor growth. In silico docking simulations showed that benserazide binds in the active site of the enzyme and reacts with the PLP cofactor by forming reversible but kinetically stable Schiff base-like adducts with the formyl moiety of pyridoxal. We conclude that benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo. Further pharmacokinetic, pharmacodynamic and preclinical animal studies are necessary to evaluate the potential of repurposing benserazide for the treatment of colorectal cancers.


International Journal of Molecular Medicine | 2013

Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury

Katalin Módis; Domokos Gerő; Rita Stangl; Olivér Rosero; Attila Szijártó; Gábor Lotz; Petra Mohácsik; Petra Szoleczky; Ciro Coletta; Csaba Szabó

Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300–1,000 μM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 μM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 μM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.


Molecular Medicine | 2015

The HIV protease inhibitor saquinavir inhibits HMGB1-driven inflammation by targeting the interaction of cathepsin V with TLR4/MyD88

John P. Pribis; Yousef Al-Abed; Huan Yang; Domokos Gero; Hongbo Xu; Marcelo F. Montenegro; Eileen M. Bauer; Sodam Kim; Sangeeta Chavan; Changchun Cai; Tunliang Li; Petra Szoleczky; Csaba Szabó; Kevin J. Tracey; Timothy R. Billiar

Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macrophages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4-driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide form). We identified two protease inhibitors (Pls) that block cathepsin V and thereby inhibit disulfide HMGB1-induced TLR4 activation: saquinavir (SQV), a firstgeneration PI targeting viral HIV protease and STO33438 (334), targeting mammalian proteases. We discovered that cathepsin V binds TLR4 under basal and HMGB1-stimulated conditions, but dissociates in the presence of SQV over time. Thus cathepsin V is a novel target for first-generation HIV PIs and represents a potential therapeutic target of pathologic inflammation.

Collaboration


Dive into the Petra Szoleczky's collaboration.

Top Co-Authors

Avatar

Csaba Szabó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Domokos Gero

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Katalin Módis

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ciro Coletta

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Domokos Gerő

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Gabor Olah

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Andreas Papapetropoulos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bartosz Szczesny

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge