Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petri Ala-Laurila is active.

Publication


Featured researches published by Petri Ala-Laurila.


Science | 2011

Activation of visual pigments by light and heat

Dong Gen Luo; Wendy Wing Sze Yue; Petri Ala-Laurila; King Wai Yau

Thermal activation of visual pigments involves the same chromophore-isomerization reaction as does light activation. Vision begins with photoisomerization of visual pigments. Thermal energy can complement photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation as noise that interferes with light detection. For half a century, the mechanism underlying this dark noise has remained controversial. We report here a quantitative relation between a pigment’s photoactivation energy and its peak-absorption wavelength, λmax. Using this relation and assuming that pigment activations by light and heat go through the same ground-state isomerization energy barrier, we can predict the relative noise of diverse pigments with multi–vibrational-mode thermal statistics. The agreement between predictions and our measurements strongly suggests that pigment noise arises from canonical isomerization. The predicted high noise for pigments with λmax in the infrared presumably explains why they apparently do not exist in nature.


The Journal of General Physiology | 2006

Visual Cycle: Dependence of Retinol Production and Removal on Photoproduct Decay and Cell Morphology

Petri Ala-Laurila; Alexander V. Kolesnikov; Rosalie K. Crouch; Efthymia Tsina; Sergey A. Shukolyukov; Victor I. Govardovskii; Yiannis Koutalos; Barbara Wiggert; Maureen E. Estevez; M. Carter Cornwall

The visual cycle is a chain of biochemical reactions that regenerate visual pigment following exposure to light. Initial steps, the liberation of all-trans retinal and its reduction to all-trans retinol by retinol dehydrogenase (RDH), take place in photoreceptors. We performed comparative microspectrophotometric and microfluorometric measurements on a variety of rod and cone photoreceptors isolated from salamander retinae to correlate the rates of photoproduct decay and retinol production. Metapigment decay rate was spatially uniform within outer segments and 50–70 times faster in the cells that contained cone-type pigment (SWS2 and M/LWS) compared to cells with rod-type pigment (RH1). Retinol production rate was strongly position dependent, fastest at the base of outer segments. Retinol production rate was 10–40 times faster in cones with cone pigments (SWS2 and M/LWS) than in the basal OS of rods containing rod pigment (RH1). Production rate was approximately five times faster in rods containing cone pigment (SWS2) than the rate in basal OS of rods containing the rod pigment (RH1). We show that retinol production is defined either by metapigment decay rate or RDH reaction rate, depending on cell type or outer segment region, whereas retinol removal is defined by the surface-to-volume ratio of the outer segment and the availability of retinoid binding protein (IRBP). The more rapid rates of retinol production in cones compared to rods are consistent with the more rapid operation of the visual cycle in these cells.


Nature Neuroscience | 2011

Cone photoreceptor contributions to noise and correlations in the retinal output

Petri Ala-Laurila; Martin Greschner; E. J. Chichilnisky; Fred Rieke

Transduction and synaptic noise generated in retinal cone photoreceptors determine the fidelity with which light inputs are encoded, and the readout of cone signals by downstream circuits determines whether this fidelity is used for vision. We examined the effect of cone noise on visual signals by measuring its contribution to correlated noise in primate retinal ganglion cells. Correlated noise was strong in the responses of dissimilar cell types with shared cone inputs. The dynamics of cone noise could account for rapid correlations in ganglion cell activity, and the extent of shared cone input could explain correlation strength. Furthermore, correlated noise limited the fidelity with which visual signals were encoded by populations of ganglion cells. Thus, a simple picture emerges: cone noise, traversing the retina through diverse pathways, accounts for most of the noise and correlations in the retinal output and constrains how higher centers exploit signals carried by parallel visual pathways.


The Journal of General Physiology | 2004

Physiological and Microfluorometric Studies of Reduction and Clearance of Retinal in Bleached Rod Photoreceptors

Efthymia Tsina; Chunhe Chen; Yiannis Koutalos; Petri Ala-Laurila; Marco Tsacopoulos; Barbara Wiggert; Rosalie K. Crouch; M. Carter Cornwall

The visual cycle comprises a sequence of reactions that regenerate the visual pigment in photoreceptors during dark adaptation, starting with the reduction of all-trans retinal to all-trans retinol and its clearance from photoreceptors. We have followed the reduction of retinal and clearance of retinol within bleached outer segments of red rods isolated from salamander retina by measuring its intrinsic fluorescence. Following exposure to a bright light (bleach), increasing fluorescence intensity was observed to propagate along the outer segments in a direction from the proximal region adjacent to the inner segment toward the distal tip. Peak retinol fluorescence was achieved after ∼30 min, after which it declined very slowly. Clearance of retinol fluorescence is considerably accelerated by the presence of the exogenous lipophilic substances IRBP (interphotoreceptor retinoid binding protein) and serum albumin. We have used simultaneous fluorometric and electrophysiological measurements to compare the rate of reduction of all-trans retinal to all-trans retinol to the rate of recovery of flash response amplitude in these cells in the presence and absence of IRBP. We find that flash response recovery in rods is modestly accelerated in the presence of extracellular IRBP. These results suggest such substances may participate in the clearance of retinoids from rod photoreceptors, and that this clearance, at least in rods, may facilitate dark adaptation by accelerating the clearance of photoproducts of bleaching.


The Journal of Physiology | 2007

Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods

Petri Ala-Laurila; Kristian Donner; Rosalie K. Crouch; M. Carter Cornwall

Dark noise, light‐induced noise and responses to brief flashes of light were recorded in the membrane current of isolated rods from larval tiger salamander retina before and after bleaching most of the native visual pigment, which mainly has the 11‐cis‐3,4‐dehydroretinal (A2) chromophore, and regenerating with the 11‐cis‐retinal (A1) chromophore in the same isolated rods. The purpose was to test the hypothesis that blue‐shifting the pigment by switching from A2 to A1 will decrease the rate of spontaneous thermal activations and thus intrinsic light‐like noise in the rod. Complete recordings were obtained in five cells (21°C). Based on the wavelength of maximum absorbance, λmax,A1= 502 nm and λmax,A2= 528 nm, the average A2 : A1 ratio determined from rod spectral sensitivities and absorbances was ∼0.74 : 0.26 in the native state and ∼0.09 : 0.91 in the final state. In the native (A2) state, the single‐quantum response (SQR) had an amplitude of 0.41 ± 0.03 pA and an integration time of 3.16 ± 0.15 s (mean ±s.e.m.). The low‐frequency branch of the dark noise power spectrum was consistent with discrete SQR‐like events occurring at a rate of 0.238 ± 0.026 rod−1 s−1. The corresponding values in the final state were 0.57 ± 0.07 pA (SQR amplitude), 3.47 ± 0.26 s (SQR integration time), and 0.030 ± 0.006 rod−1 s−1 (rate of dark events). Thus the rate of dark events per rod and the fraction of A2 pigment both changed by ca 8‐fold between the native and final states, indicating that the dark events originated mainly in A2 molecules even in the final state. By extrapolating the linear relation between event rates and A2 fraction to 0% A2 (100% A1) and 100% A2 (0% A1), we estimated that the A1 pigment is at least 36 times more stable than the A2 pigment. The noise component attributed to discrete dark events accounted for 73% of the total dark current variance in the native (A2) state and 46% in the final state. The power spectrum of the remaining ‘continuous’ noise component did not differ between the two states. The smaller and faster SQR in the native (A2) state is consistent with the idea that the rod behaves as if light‐adapted by dark events that occur at a rate of nearly one per integration time. Both the decreased level of dark noise and the increased SQR amplitude must significantly improve the reliability of photon detection in dim light in the presence of the A1 chromophore compared to the native (A2) state in salamander rods.


Vision Research | 2004

On the relation between the photoactivation energy and the absorbance spectrum of visual pigments

Petri Ala-Laurila; Johan Pahlberg; Ari Koskelainen; Kristian Donner

We relate the collected experimental data on the minimum energy for photoactivation (E(a)) to the wavelengths of peak absorbance (lambda(max)) of 12 visual pigments. The E(a) values have been determined from the temperature-dependence of spectral sensitivity in the long-wavelength range. As shown previously, the simple physical idea E(a) =const. x (1/lambda(max)) (here termed the Stiles-Lewis-Barlow or SLB relation) does not hold strictly. Yet there is a significant correlation between E(a) and 1/lambda(max) (r(2)=0.73) and the regression slope obtained by an unbiased fit is 84% of the predicted value of the best SLB fit. The correlation can be decomposed into effects of A1 --> A2 chromophore change and effects of opsin differences. For a chromophore change in the same opsin, studied in two A1/A2 pigment pairs, the SLB relation holds nearly perfectly. In seven pigments having different opsins but the same (A2) chromophore, the correlation of E(a) and 1/lambda(max) remained highly significant (r(2)=0.78), but the regression coefficient is only 72% of the best SLB fit. We conclude that (1) when the chromophore is exchanged in the same opsin, the lambda(max) shift directly reflects the difference in photoactivation energies, (2) when the opsin is modified by amino acid substitutions, lambda(max) and E(a) can be tuned partly independently, although there is a dominant tendency for inverse proportionality. In four (A1) rhodopsins with virtually the same lambda(max), E(a) varied over a 4.5 kcal/mol range, which may be taken as a measure of the freedom for independent tuning. Assuming that low E(a) correlates with high thermal noise, we suggest that the leeway in lambda(max) - E(a) coupling is used by natural selection to keep E(a) as high as possible in long-wavelength-sensitive pigments, and that this is why the opsin-dependent E(a) (1/lambda(max))-relation is shallower than predicted.


Journal of Biological Chemistry | 2009

The Action of 11-cis-Retinol on Cone Opsins and Intact Cone Photoreceptors

Petri Ala-Laurila; M. Carter Cornwall; Rosalie K. Crouch; Masahiro Kono

11-cis-Retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5′-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-Retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.


Nature | 2000

Measurement of thermal contribution to photoreceptor sensitivity

Ari Koskelainen; Petri Ala-Laurila; Nanna Fyhrquist; Kristian Donner

Activation of a visual pigment molecule to initiate phototransduction requires a minimum energy, Ea, that need not be wholly derived from a photon, but may be supplemented by heat. Theory predicts that absorbance at very long wavelengths declines with the fraction of molecules that have a sufficient complement of thermal energy, and that Ea is inversely related to the wavelength of maximum absorbance (λmax) of the pigment. Consistent with the first of these predictions, warming increases relative visual sensitivity to long wavelengths. Here we measure this effect in amphibian photoreceptors with different pigments to estimate Ea (refs 2, 5,6,7) and test experimentally the predictions of an inverse relation between Ea and λmax. For rods and ‘red’ cones in the adult frog retina, we find no significant difference in Ea between the two pigments involved, although their λmax values are very different. We also determined Ea for the rhodopsin in toad retinal rods—spectrally similar to frog rhodopsin but differing in amino-acid sequence—and found that it was significantly higher. In addition, we estimated Ea for two pigments whose λmax difference was due only to a chromophore difference (A1 and A2 pigment, in adult and larval frog cones). Here Ea for A2 was lower than for A1. Our results refute the idea of a necessary relation between λmax and Ea, but show that the A1 → A2 chromophore substitution decreases Ea.


Philosophical Transactions of the Royal Society B | 2017

Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision

Daisuke Takeshita; Lina Smeds; Petri Ala-Laurila

Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’.


Vision Research | 2007

Visual cycle and its metabolic support in gecko photoreceptors

Alexander V. Kolesnikov; Petri Ala-Laurila; S.A. Shukolyukov; Rosalie K. Crouch; Barbara Wiggert; Maureen E. Estevez; Victor I. Govardovskii; M.C. Cornwall

Photoreceptors of nocturnal geckos are transmuted cones that acquired rod morphological and physiological properties but retained cone-type phototransduction proteins. We have used microspectrophotometry and microfluorometry of solitary isolated green-sensitive photoreceptors of Tokay gecko to study the initial stages of the visual cycle within these cells. These stages are the photolysis of the visual pigment, the reduction of all-trans retinal to all-trans retinol, and the clearance of all-trans retinol from the outer segment (OS) into the interphotoreceptor space. We show that the rates of decay of metaproducts (all-trans retinal release) and retinal-to-retinol reduction are intermediate between those of typical rods and cones. Clearance of retinol from the OS proceeds at a rate that is typical of rods and is greatly accelerated by exposure to interphotoreceptor retinoid-binding protein, IRBP. The rate of retinal release from metaproducts is independent of the position within the OS, while its conversion to retinol is strongly spatially non-uniform, being the fastest at the OS base and slowest at the tip. This spatial gradient of retinol production is abolished by dialysis of saponin-permeabilized OSs with exogenous NADPH or substrates for its production by the hexose monophosphate pathway (NADP+glucose-6-phosphate or 6-phosphogluconate, glucose-6-phosphate alone). Following dialysis by these agents, retinol production is accelerated by several-fold compared to the fastest rates observed in intact cells in standard Ringer solution. We propose that the speed of retinol production is set by the availability of NADPH which in turn depends on ATP supply within the outer segment. We also suggest that principal source of this ATP is from mitochondria located within the ellipsoid region of the inner segment.

Collaboration


Dive into the Petri Ala-Laurila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosalie K. Crouch

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rauli Albert

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge