Petrik Galvosas
MacDiarmid Institute for Advanced Materials and Nanotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petrik Galvosas.
Nature | 2006
Rustem Valiullin; Sergej Naumov; Petrik Galvosas; Jörg Kärger; Hyung-June Woo; F. Porcheron; P. A. Monson
In recent years, considerable progress has been made in the development of novel porous materials with controlled architectures and pore sizes in the mesoporous range. An important feature of these materials is the phenomenon of adsorption hysteresis: for certain ranges of applied pressure, the amount of a molecular species adsorbed by the mesoporous host is higher on desorption than on adsorption, indicating a failure of the system to equilibrate. Although this phenomenon has been known for over a century, the underlying internal dynamics responsible for the hysteresis remain poorly understood. Here we present a combined experimental and theoretical study in which microscopic and macroscopic aspects of the relaxation dynamics associated with hysteresis are quantified by direct measurement and computer simulations of molecular models. Using nuclear magnetic resonance techniques and Vycor porous glass as a model mesoporous system, we have explored the relationship between molecular self-diffusion and global uptake dynamics. For states outside the hysteresis region, the relaxation process is found to be essentially diffusive in character; within the hysteresis region, the dynamics slow down dramatically and, at long times, are dominated by activated rearrangement of the adsorbate density within the host material.
Annual reports on NMR spectroscopy | 2007
Frank Stallmach; Petrik Galvosas
The basic principles of NMR diffusion studies and a generalized approach to calculate NMR spin echo attenuation due to diffusion in the presence of gradients of the polarizing magnetic field are presented. By means of this generalized approach, PFG NMR sequences for diffusion studies, including those using alternating pulsed field gradients (APFG) and modern techniques for advanced cross-term suppression by magic pulsed field gradient (MPFG) ratios, are reviewed. Gradient systems and experimental procedures for the generation of high-intensity pulsed field gradients are discussed and recent examples of their successful application in diffusion studies with porous materials are given.
Journal of Chemical Physics | 2008
Joshua Sangoro; Ciprian Iacob; Anatoli Serghei; Sergej Naumov; Petrik Galvosas; Jörg Kärger; Christian Wespe; Frank Bordusa; Alexander Stoppa; Johannes Hunger; Richard Buchner; Friedrich Kremer
Broadband dielectric and terahertz spectroscopy (10(-2)-10(+12) Hz) are combined with pulsed field gradient nuclear magnetic resonance (PFG-NMR) to explore charge transport and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The dielectric spectra are interpreted as superposition of high-frequency relaxation processes associated with dipolar librations and a conductivity contribution. The latter originates from hopping of charge carriers on a random spatially varying potential landscape and quantitatively fits the observed frequency and temperature dependence of the spectra. A further analysis delivers the hopping rate and enables one to deduce--using the Einstein-Smoluchowski equation--the translational diffusion coefficient of the charge carriers in quantitative agreement with PFG-NMR measurements. By that, the mobility is determined and separated from the charge carrier density; for the former, a Vogel-Fulcher-Tammann and for the latter, an Arrhenius temperature dependence is obtained. There is no indication of a mode arising from the reorientation of stable ion pairs.
ChemPhysChem | 2009
Armin Feldhoff; Jürgen Caro; Hervé Jobic; Jacques Ollivier; C. Krause; Petrik Galvosas; Jörg Kärger
By applying pulsed-field gradient nuclear magnetic resonance (PFG NMR) in comparison to quasi-elastic neutron scattering (QENS), we sense by measurement of the diffusion of n-octane on different length scales, transport resistances in faujasite type X (which is isostructural with type Y and differs by the lower Si/Al ratio only) with mutual distances of less than 300 nm. Direct observation of the real structure of zeolite X by transmission electron microscopy identifies them as stacking faults of mirror-twin type on (111)-type planes of the cubic framework. Thus, direct experimental proof is given that, in general, nanoporous host systems such as zeolite crystals cannot be considered as a mere arrangement of cavities. It is rather the presence of structural defects that dominates their properties as soon as transport phenomena with practical relevance, including chemical conversion by heterogeneous catalysis and chemical separation by molecular sieving and selective adsorption, become relevant.
Journal of Chemical Physics | 2005
Ying Qiao; Petrik Galvosas; T. Adalsteinsson; Monika Schönhoff; Paul T. Callaghan
Diffusion exchange of dextran with molecular weights 4.4 and 77 kDa through polyelectrolyte multilayer (PEM) hollow capsules consisting of four bilayers of polystyrene sulfonate/polydiallyldimethylammonium chloride has been investigated using two-dimensional nuclear-magnetic-resonance methods: diffusion-diffusion exchange spectroscopy (DEXSY) and diffusion-relaxation correlation spectroscopy (DRCOSY). Results obtained in DRCOSY experiments show that the diffusion process of dextran 77 kDa exhibits an observation time dependence suggesting a diffusion behavior restricted by confinement. We find evidence for both single capsule and capsule aggregate states, with a partitioning of the 77-kDa dextran between the free and capsule states much larger than that suggested by volume fraction alone. Results from DEXSY experiments show that dextran 77 kDa is in diffusive exchange through the capsules with an exchange time of around 1 s. In contrast, the capsules have no detectable influence on the diffusion process of the dextran 4.4 kDa. This quantitative information may be used in designing PEM capsules as drug carriers.
Journal of Applied Geophysics | 2002
Corina Vogt; Petrik Galvosas; Norbert Klitzsch; Frank Stallmach
Abstract The self-diffusion of water and hexadecane in medium and coarse sands from glacial sand deposits in central Germany were investigated by pulsed field gradient nuclear magnetic resonance (PFG NMR). Due to the restriction of the diffusion path at the pore/grain interface, the measured apparent self-diffusion coefficients ( D ( Δ )) in the pore space depend on the observation time ( Δ ) in the PFG NMR experiment. Although the bulk self-diffusion coefficients of water and hexadecane differ by about one order of magnitude, the apparent self-diffusion coefficients in the pore space obey the same characteristic time-behaviour, which depends only on geometrical properties of the pore system. Using the “short-time diffusion” model, surface-to-volume ( S / V ) ratios and inherent self-diffusion coefficients ( D 0 ) of the pore fluids were extracted from these diffusion measurements. The S / V ratios obtained are independent of the pore fluid used and agree with known geometrical properties of the sand grains. Moreover, the D 0 values are consistent with the corresponding bulk self-diffusion coefficients measured separately. In contrast to these results of PFG NMR, simultaneous investigations of longitudinal ( T 1 ) nuclear magnetic relaxation reveal that the relaxation time of the pore fluid is a less suitable parameter for a quantitative estimation of geometrical properties of the pore/grain interface in these unconsolidated sediments since it depends on chemical properties of the fluid/grain interface.
ChemPhysChem | 2011
Christian Chmelik; Dirk Enke; Petrik Galvosas; Oliver C. Gobin; Andreas Jentys; Hervé Jobic; Jörg Kärger; C. Krause; Jens Kullmann; Johannes A. Lercher; Sergej Naumov; Douglas M. Ruthven; Tobias Titze
The remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.
Journal of Applied Physics | 2001
Nikolaus Nestle; Petrik Galvosas; Oliver Geier; Christian Zimmermann; Marwan Dakkouri; Jörg Kärger
While the nuclear spin relaxation time changes in hydrating cement materials have been widely studied by various groups during the last 20 years, data on the self-diffusion behavior of the pore water during hydration of a cement paste are much scarcer. Taking advantage of improved spectrometer hardware for pulsed field gradient diffusometry and a specialized pulse sequence which is designed to compensate the detrimental effects of inner magnetic field gradients in the sample we have studied the water self-diffusion behavior in pastes prepared from white cement at various water/cement ratios. For the same mixtures, studies of the transverse spin relaxation behavior were also conducted. A comparison of the results from both techniques shows that the diffusion coefficient starts to decrease only much later than the relaxation times for all pastes studied.
Journal of Physical Chemistry B | 2010
Konstantin Ulrich; Petrik Galvosas; Jörg Kärger; Farida Grinberg; Jarian Vernimmen; Vera Meynen; Pegie Cool
Molecular dynamics of triblock copolymers under confinement by the nanochannels of SBA-15 was investigated using pulsed field gradient (PFG) NMR spectroscopy with high-intensity field gradient pulses. The mesoporous material SBA-15 was synthesized using the surfactant Pluronic P123 (EO(20)-PO(70)-EO(20)). The diffusion of P123 in mixtures with water was studied both in bulk and under the condition of confinement by the mesoporous channels of SBA-15. As a result, at room temperature the diffusion of P123 in SBA-15 is more than a factor three smaller than that of the same polymer in the bulk mixture with water. A pronounced atypical temperature dependence of the measured diffusivities was observed both in the confined and in the bulk systems. This atypical temperature dependence was attributed to the transition from the aggregated state to the molecular solution and gave an evidence for a qualitative similarity of the supermolecular organization of the Pluronic/water mixtures under confinements and in the bulk. Confinements were shown to produce significant effects on diffusion properties of Pluronic molecules. The diffusivity of self-associates forming up at room temperature was considerably diminished in comparison to the bulk systems. In contrast, at low temperatures diffusion of the individually dissolved molecules was comparably fast, but subjected to anisotropy induced by channels.
Journal of Magnetic Resonance | 2008
Robert H. Morris; Martin Bencsik; Nikolaus Nestle; Petrik Galvosas; David J. Fairhurst; Anil Vangala; Yvonne Perrie; Glen McHale
MRI of fluids containing lipid coated microbubbles has been shown to be an effective tool for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar.
Collaboration
Dive into the Petrik Galvosas's collaboration.
MacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputsMacDiarmid Institute for Advanced Materials and Nanotechnology
View shared research outputs