Petro Khoroshyy
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petro Khoroshyy.
Langmuir | 2012
Kata Hajdu; Csilla Gergely; Marta Martin; T. Cloitre; László Zimányi; Katalin Tenger; Petro Khoroshyy; Gabriela Palestino; Vivechana Agarwal; Klára Hernádi; Zoltán Németh; László Nagy
The purified photosynthetic reaction center protein (RC) from Rhodobacter sphaeroides R-26 purple bacteria was bound to porous silicon microcavities (PSiMc) either through silane-glutaraldehyde (GTA) chemistry or via a noncovalent peptide cross-linker. The characteristic resonance mode in the microcavity reflectivity spectrum red shifted by several nanometers upon RC binding, indicating the protein infiltration into the porous silicon (PSi) photonic structure. Flash photolysis experiments confirmed the photochemical activity of RC after its binding to the solid substrate. The kinetic components of the intraprotein charge recombination were considerably faster (τ(fast) = 14 (±9) ms, τ(slow) = 230 (±28) ms with the RC bound through the GTA cross-linker and only τ(fast) = 27 (±3) ms through peptide coating) than in solution (τ(fast) = 120 (±3) ms, τ(slow) = 1387 (±2) ms), indicating the effect of the PSi surface on the light-induced electron transfer in the protein. The PSi/RC complex was found to oxidize the externally added electron donor, mammalian cytochrome c, and the cytochrome oxidation was blocked by the competitive RC inhibitor, terbutryne. This fact indicates that the specific surface binding sites on the PSi-bound RC are still accessible to external cofactors and an electronic interaction with redox components in the aqueous environment is possible. This new type of biophotonic material is considered to be an excellent model for new generation applications at the interface of silicon-based electronics and biological redox systems designed by nature.
Journal of Photochemistry and Photobiology B-biology | 2013
Petro Khoroshyy; András Dér; László Zimányi
The photocycle of photoactive yellow protein was studied by kinetic absorption spectroscopy from below 100ns to seconds, at moderately alkaline pH, in the presence of high concentrations of various salts. Chemometric analysis combined with multiexponential fit of the flash-induced difference spectra provided evidence for five intermediates, including a spectrally silent form before the final recovery of the parent state, but only three with significantly distinct spectra. The calculated intermediate spectra constituted the input for the following spectrotemporal model fit using a sufficiently complex photocycle scheme with reversible transitions. This yielded the rate coefficients of the molecular transitions, the final spectra and the kinetics of the intermediates. Except for the transition between the two red shifted (early) intermediates (pR1 and pR2) and the final photocycle step, all reactions appeared to be reversible. Kosmotropic and chaotropic cosolutes had a systematic effect on the molecular rate coefficients. The largest effect, associated presumably with the exposure of the hydrophobic interior of the protein, accompanies the transition between the second red-shifted and the first blue-shifted intermediate (pR2 and pB1, respectively), i.e. it coincides with the chromophore protonation. The dependence of the rate coefficients on the Hofmeister cosolutes suggests that the conformational change of photoactive yellow protein leading eventually to the most unfolded signaling state takes place in several steps, and starts already with the relaxation after the chromophore isomerization in the microsecond time domain.
Acta Biologica Hungarica | 2007
Katalin Tenger; Petro Khoroshyy; K. L. Kovács; László Zimányi; Gábor Rákhely
We improved an already existing cytochrome c expression system to a reliable, tightly controllable one to achieve a higher expression yield for single cysteine mutants of horse cytochrome c. The protein is heterologously overexpressed in E. coli together with the maturation coordinating enzyme heme lyase from yeast. Various plasmid constructs and host strains were tested for protein expression yield and routinely around 35 mg/L yield was achieved, which is a good result for a post-translationally modified enzyme. The purpose of producing cysteine mutants is to position accessible cysteine residues on the surface of cytochrome c which can be labeled with a photoactive redox dye, 8-thiouredopyrene-1,3,6-trisulfonate, TUPS. TUPS labeled proteins have been used for intramolecular and intermolecular electron transfer measurements. Here, we initiate the photoreduction of cytochrome c oxidase, the natural electron acceptor partner of cytochrome c by an appropriate cytochrome c mutant labeled with TUPS. The electron transfer from cytochrome c to the first cytochrome oxidase redox cofactor, copper A, is shown to be very fast.
Photochemistry and Photobiology | 2004
Alexander B. Kotlyar; Natalia Borovok; Petro Khoroshyy; Katalin Tenger; László Zimányi
Abstract 1-Thiouredopyrene-3,6,8-trisulfonate (TUPS) has recently been used as a photoinduced covalent redox label capable of reducing various cofactors of proteins. A new reaction of this dye, whereby its excited triplet state oxidizes suitable electron donors, is now reported. The characteristic difference spectrum of the reduced radical of TUPS is determined. We also observe the self-exchange electron transfer between two TUPS molecules in their triplet excited states and determine the reaction scheme and the rate constants of the various pathways in the process of triplet depletion. The ability of photoexcited TUPS to withdraw an electron from reduced cytochrome-c is also observed. It is thus demonstrated that TUPS is an appropriate photoinduced covalent redox label for initiating both the oxidative and reductive phases of electron transfer processes in biological macromolecules.
Journal of Bioenergetics and Biomembranes | 2010
Katalin Tenger; Petro Khoroshyy; Gábor Rákhely; László Zimányi
Maturation of c-type cytochromes involves the covalent and stereospecific enzymatic attachment of a heme b via thioether linkages to two conserved cysteines within apocytochromes. Horse cytochrome c is readily matured into its native holoform in the cytoplasm of E. coli when co-expressed with yeast cytochrome c heme lyase. Here we report the low yield formation of holocytochrome with covalently attached heme also in the absence of heme lyase. This is the first demonstration of in vivo maturation of a eukaryotic cytochrome c in a prokaryotic cytoplasm without the assistance by a dedicated enzymatic maturation system. The assembled cytochrome c can be oxidized by cytochrome c oxidase, indicating the formation of a functional protein. The absorption spectrum is typical of a low spin, six coordinated c-type heme. Nevertheless, minor spectral differences relative to the native cytochrome c, deviation of the midpoint reduction potential and slightly altered kinetic parameters of the interaction with cytochrome c oxidase emphasize the importance of cytochrome c heme lyase in folding cytochrome c into its native conformation.
BioSystems | 2006
Thomas Mair; László Zimányi; Petro Khoroshyy; Andrea Müller; Stefan C. Müller
Journal of Chemical Information and Modeling | 2005
Katalin Tenger; Petro Khoroshyy; Balázs Leitgeb; Gábor Rákhely; Natalia Borovok; Alexander B. Kotlyar; D. A. Dolgikh; László Zimányi
Physica D: Nonlinear Phenomena | 2010
László Zimányi; Petro Khoroshyy; Thomas Mair
Biochimica et Biophysica Acta | 2004
László Zimányi; Katalin Tenger; Petro Khoroshyy; D. A. Dolgikh; S. Siletsky; Natalia Borovok; Alexander B. Kotlyar
Archive | 2009
László Zimányi; Csaba Bagyinka; Alajos Bérczi; Petro Khoroshyy; Gábor Rákhely; Katalin Tenger