Petros Giastas
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petros Giastas.
Journal of Immunology | 2012
Irini Evnouchidou; James R. Birtley; Sergey S. Seregin; Athanasios Papakyriakou; Efthalia Zervoudi; Martina Samiotaki; George Panayotou; Petros Giastas; Olivia Petrakis; Dimitris Georgiadis; Andrea Amalfitano; Emmanuel Saridakis; Irene M. Mavridis; Efstratios Stratikos
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) cooperate to trim antigenic peptide precursors for loading onto MHC class I molecules and help regulate the adaptive immune response. Common coding single nucleotide polymorphisms in ERAP1 and ERAP2 have been linked with predisposition to human diseases ranging from viral and bacterial infections to autoimmunity and cancer. It has been hypothesized that altered Ag processing by these enzymes is a causal link to disease etiology, but the molecular mechanisms are obscure. We report in this article that the common ERAP2 single nucleotide polymorphism rs2549782 that codes for amino acid variation N392K leads to alterations in both the activity and the specificity of the enzyme. Specifically, the 392N allele excises hydrophobic N-terminal residues from epitope precursors up to 165-fold faster compared with the 392K allele, although both alleles are very similar in excising positively charged N-terminal amino acids. These effects are primarily due to changes in the catalytic turnover rate (kcat) and not in the affinity for the substrate. X-ray crystallographic analysis of the ERAP2 392K allele suggests that the polymorphism interferes with the stabilization of the N terminus of the peptide both directly and indirectly through interactions with key residues participating in catalysis. This specificity switch allows the 392N allele of ERAP2 to supplement ERAP1 activity for the removal of hydrophobic N-terminal residues. Our results provide mechanistic insight to the association of this ERAP2 polymorphism with disease and support the idea that polymorphic variation in Ag processing enzymes constitutes a component of immune response variability in humans.
Nature Structural & Molecular Biology | 2014
Marios Zouridakis; Petros Giastas; Eleftherios Zarkadas; Dafni Chroni-Tzartou; Piotr Bregestovski; Socrates J. Tzartos
We determined the X-ray crystal structures of the extracellular domain (ECD) of the monomeric state of human neuronal α9 nicotinic acetylcholine receptor (nAChR) and of its complexes with the antagonists methyllycaconitine and α-bungarotoxin at resolutions of 1.8 Å, 1.7 Å and 2.7 Å, respectively. The structure of the monomeric α9 ECD superimposed well with the structures of homologous proteins in pentameric assemblies, denoting native folding, despite the absence of a complementary subunit and transmembrane domain. The interaction motifs of both antagonists were similar to those in the complexes with homologous pentameric proteins, thus highlighting the major contribution of the principal side of α9 ECD to their binding. The structures revealed a functionally important β7-β10 strand interaction in α9-containing nAChRs, involving their unique Thr147, a hydration pocket similar to that of mouse α1 ECD and a membrane-facing network coordinated by the invariant Arg210.
Journal of Biological Inorganic Chemistry | 2006
Petros Giastas; Nikos Pinotsis; Georgios Efthymiou; Matthias Wilmanns; Panayotis Kyritsis; Jean-Marc Moulis; Irene M. Mavridis
The structure of the 2[4Fe–4S] ferredoxin (PaFd) from Pseudomonas aeruginosa, which belongs to the Allochromatium vinosum (Alvin) subfamily, has been determined by X-ray crystallography at 1.32-Å resolution, which is the highest up to now for a member of this subfamily of Fds. The main structural features of PaFd are similar to those of AlvinFd. However, the significantly higher resolution of the PaFd structure makes possible a reliable comparison with available high-resolution structures of [4Fe–4S]-containing Fds, in an effort to rationalize the unusual electrochemical properties of Alvin-like Fds. Three major factors contributing to the reduction potential values of [4Fe–4S]2+/+ clusters of Fds, namely, the surface accessibility of the clusters, the N–H···S hydrogen-bonding network, and the volume of the cavities hosting the clusters, are extensively discussed. The volume of the cavities is introduced in the present work for the first time, and can in part explain the very negative potential of cluster I of Alvin-like Fds.
Molecular Pharmacology | 2015
Layla Azam; Athanasios Papakyriakou; Marios Zouridakis; Petros Giastas; Socrates J. Tzartos; J. Michael McIntosh
The α9α10 nicotinic acetylcholine receptor (nAChR) was first identified in the auditory system, where it mediates synaptic transmission between efferent olivocochlear cholinergic fibers and cochlea hair cells. This receptor gained further attention due to its potential role in chronic pain and breast and lung cancers. We previously showed that α-conotoxin (α-CTx) RgIA, one of the few α9α10 selective ligands identified to date, is 300-fold less potent on human versus rat α9α10 nAChR. This species difference was conferred by only one residue in the (−), rather than (+), binding region of the α9 subunit. In light of this unexpected discovery, we sought to determine other interacting residues with α-CTx RgIA. A previous molecular modeling study, based on the structure of the homologous molluscan acetylcholine-binding protein, predicted that RgIA interacts with three residues on the α9(+) face and two residues on the α10(−) face of the α9α10 nAChR. However, mutations of these residues had little or no effect on toxin block of the α9α10 nAChR. In contrast, mutations of homologous residues in the opposing nAChR subunits (α10 Ε197, P200 and α9 T61, D121) resulted in 19- to 1700-fold loss of toxin activity. Based on the crystal structure of the extracellular domain (ECD) of human α9 nAChR, we modeled the rat α9α10 ECD and its complexes with α-CTx RgIA and acetylcholine. Our data support the interaction of α-CTx RgIA at the α10/α9 rather than the α9/α10 nAChR subunit interface, and may facilitate the development of selective ligands with therapeutic potential.
Journal of Biological Chemistry | 2015
Anastasia Mpakali; Petros Giastas; Nikolas Mathioudakis; Irene M. Mavridis; Emmanuel Saridakis; Efstratios Stratikos
Background: ER aminopeptidases generate antigenic peptides, but how they recognize their substrates is unclear. Results: We solved crystal structures of ERAP2 in complex with a substrate analogue and a peptide product. Conclusion: The peptides were found trapped inside a large cavity adjacent to the catalytic site. Significance: Interactions of the substrate with the internal cavity can result in both substrate permissiveness and limited sequence bias. Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Nikolaos Kouvatsos; Petros Giastas; Dafni Chroni-Tzartou; Cornelia Poulopoulou; Socrates J. Tzartos
Significance Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in fast neurotransmission. Here, we present the crystal structure of the homopentameric assembly of the extracellular domain (ECD) of α2 nAChR subunit in complex with an agonist. The structure provides a unique opportunity to probe the interactions involved in the formation of the ligand binding site of a WT nAChR and their role in stabilizing an agonist. Furthermore, functional studies revealed the role of additional residues in the activation and desensitization of the α2β2 nAChRs. High sequence identity of α2 ECD with other neuronal subunits signifies the importance of the structure as a template for modeling several neuronal nAChR ECDs and for designing nAChR subtype-specific drugs against related diseases. In this study we report the X-ray crystal structure of the extracellular domain (ECD) of the human neuronal α2 nicotinic acetylcholine receptor (nAChR) subunit in complex with the agonist epibatidine at 3.2 Å. Interestingly, α2 was crystallized as a pentamer, revealing the intersubunit interactions in a wild type neuronal nAChR ECD and the full ligand binding pocket conferred by two adjacent α subunits. The pentameric assembly presents the conserved structural scaffold observed in homologous proteins, as well as distinctive features, providing unique structural information of the binding site between principal and complementary faces. Structure-guided mutagenesis and electrophysiological data confirmed the presence of the α2(+)/α2(−) binding site on the heteromeric low sensitivity α2β2 nAChR and validated the functional importance of specific residues in α2 and β2 nAChR subunits. Given the pathological importance of the α2 nAChR subunit and the high sequence identity with α4 (78%) and other neuronal nAChR subunits, our findings offer valuable information for modeling several nAChRs and ultimately for structure-based design of subtype specific drugs against the nAChR associated diseases.
Journal of Biological Chemistry | 2015
Sofia Arnaouteli; Petros Giastas; Athina Andreou; Mary Tzanodaskalaki; Christine Aldridge; Socrates J. Tzartos; Waldemar Vollmer; Elias Eliopoulos; Vassilis Bouriotis
Background: BA0330 and BA0331 are the only two lipoproteins among 11 known or putative polysaccharide deacetylases from Bacillus anthracis. Results: Both proteins lack deacetylase activity and are important for cell shape maintenance (BA0331) or high salt stress adaptation of the bacterium (BA0330). Conclusion: BA0330 and BA0331 stabilize the cell wall of B. anthracis. Significance: Understanding the mechanisms by which lipoproteins maintain cell wall integrity. Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis.
Acta Crystallographica Section B-structural Science | 2003
Petros Giastas; Konstantina Yannakopoulou; Irene M. Mavridis
: The present investigation is part of an ongoing study on the influence of the long end-functonalized guest molecules DBA and BNZ in the crystal packing of beta-cyclodextrin (betaCD) dimeric complexes. The title compounds are 2:2 host:guest complexes showing limited host-guest hydrogen bonding at the primary faces of the betaCD dimers. Within the betaCD cavity the guests exhibit mutual pi...pi interactions and between betaCD dimers perpendicular NH...pi interactions. The DBA guest molecule exhibits one extended and two bent conformations in the complex. The BNZ guest molecule is not planar inside betaCD, in contrast to the structure of BNZ itself, which indicates that the cavity isolates the molecules and forbids the pi...pi stacking of the aromatic rings. NMR spectroscopy studies show that in aqueous solution both DBA and BNZ form strong complexes that have 1:1 stoichiometry and structures similar to the solid state ones. The relative packing of the dimers is the same in both complexes. The axes of two adjacent dimers form an angle close to 20 degrees and have a lateral displacement approximately 2.45 A, both of which characterize the screw-channel mode of packing. Although the betaCD/BNZ complex indeed crystallizes in a space group characterizing the latter mode, the betaCD/DBA complex crystallizes in a space group with novel dimensions not resembling any of the packing modes reported so far. The new lattice is attributed to the three conformations exhibited by the guest in the crystals. However, this lattice can be transformed into another, which is isostructural to that of the betaCD/BNZ inclusion complex, if the conformation of the guest is not taken into account.
Journal of Inclusion Phenomena and Macrocyclic Chemistry | 2002
Petros Giastas; Nikolaos Mourtzis; Konstantina Yannakopoulou; Irene M. Mavridis
Abstractβ-Cyclodextrin forms a 1:1 host:guest inclusion complex ([2]pseudorotaxane) with 4-[2-(4-aminophenyl)ethyl]-benzenamine (1) in water as determined by 1D and 2D NMRexperiments. In the crystalline state, the structure of the complex has revealed a 2:2 stoichiometry, with two βCD molecules forming head-to-head dimers byH-bonds between the secondary O3 hydroxyl groups and enclosing two molecules of the guest. The packing mode of the present complex is encountered for the first time, since it does not belong to any of the four known packing types of the dimeric βCD inclusion complexes. On the other hand,N1,N4-bis(4-aminophenyl)-1,4-benzenedimethanamine 2), which is longer than 1 by a phenylene diamine unit, has not afforded any crystals, at present, however it threads into βCD in aqueous solution forming most probably [2]- and [3]pseudorotaxanes. The solution structures and the equilibria in this system are investigated.
International Journal of Biological Macromolecules | 2014
Konstantinos Lazaridis; Paraskevi Zisimopoulou; Petros Giastas; Kalliopi Bitzopoulou; Panagiota Evangelakou; Anastasia Sideri; Socrates J. Tzartos
The muscle nicotinic acetylcholine receptor (AChR) has a central role in neuromuscular transmission, and is the major target in the autoimmune disease myasthenia gravis (MG). We created mutants of the extracellular domains (ECDs) of the human α1, β1, δ and ε AChR subunits, whereby their Cys-loop was exchanged for that of the acetylcholine binding protein. The mutants were expressed in Pichia pastoris and had improved solubility resulting in 2- to 43-fold higher expression yields compared to the wild type. An additional mutant was created for the α1 ECD restoring its glycosylation site within the Cys-loop and its α-bungarotoxin binding ability. Furthermore, we constructed dimeric and pentameric concatamers of the mutant ECDs. All concatamers were successfully expressed as soluble secreted proteins, although the pentamers had about 10-fold lower expression than the dimers and were more susceptible to fragmentation. Initial crystallizations with the mutant ECDs were promising, and we reproducibly obtained crystals of the β1 ECD, diffracting at ~12 Å. Further optimization is underway to obtain crystals suitable for high resolution crystallography. The proteins described herein are useful tools in structural studies of the human muscle AChR and can be used in applications requiring high yields such as therapeutic adsorbents for MG autoantibodies.