Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petros T. Boufounos is active.

Publication


Featured researches published by Petros T. Boufounos.


IEEE Journal of Selected Topics in Signal Processing | 2010

Signal Processing With Compressive Measurements

Mark A. Davenport; Petros T. Boufounos; Michael B. Wakin; Richard G. Baraniuk

The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquist-rate samples. Interestingly, it has been shown that random projections are a near-optimal measurement scheme. This has inspired the design of hardware systems that directly implement random measurement protocols. However, despite the intense focus of the community on signal recovery, many (if not most) signal processing problems do not require full signal recovery. In this paper, we take some first steps in the direction of solving inference problems-such as detection, classification, or estimation-and filtering problems using only compressive measurements and without ever reconstructing the signals involved. We provide theoretical bounds along with experimental results.


conference on information sciences and systems | 2008

1-Bit compressive sensing

Petros T. Boufounos; Richard G. Baraniuk

Compressive sensing is a new signal acquisition technology with the potential to reduce the number of measurements required to acquire signals that are sparse or compressible in some basis. Rather than uniformly sampling the signal, compressive sensing computes inner products with a randomized dictionary of test functions. The signal is then recovered by a convex optimization that ensures the recovered signal is both consistent with the measurements and sparse. Compressive sensing reconstruction has been shown to be robust to multi-level quantization of the measurements, in which the reconstruction algorithm is modified to recover a sparse signal consistent to the quantization measurements. In this paper we consider the limiting case of 1-bit measurements, which preserve only the sign information of the random measurements. Although it is possible to reconstruct using the classical compressive sensing approach by treating the 1-bit measurements as plusmn 1 measurement values, in this paper we reformulate the problem by treating the 1-bit measurements as sign constraints and further constraining the optimization to recover a signal on the unit sphere. Thus the sparse signal is recovered within a scaling factor. We demonstrate that this approach performs significantly better compared to the classical compressive sensing reconstruction methods, even as the signal becomes less sparse and as the number of measurements increases.


IEEE Transactions on Information Theory | 2013

Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors

Laurent Jacques; Jason N. Laska; Petros T. Boufounos; Richard G. Baraniuk

The compressive sensing (CS) framework aims to ease the burden on analog-to-digital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is an inverse relationship between the achievable sampling rate and the bit depth. In this paper, we investigate an alternative CS approach that shifts the emphasis from the sampling rate to the number of bits per measurement. In particular, we explore the extreme case of 1-bit CS measurements, which capture just their sign. Our results come in two flavors. First, we consider ideal reconstruction from noiseless 1-bit measurements and provide a lower bound on the best achievable reconstruction error. We also demonstrate that i.i.d. random Gaussian matrices provide measurement mappings that, with overwhelming probability, achieve nearly optimal error decay. Next, we consider reconstruction robustness to measurement errors and noise and introduce the binary ε-stable embedding property, which characterizes the robustness of the measurement process to sign changes. We show that the same class of matrices that provide almost optimal noiseless performance also enable such a robust mapping. On the practical side, we introduce the binary iterative hard thresholding algorithm for signal reconstruction from 1-bit measurements that offers state-of-the-art performance.


2007 IEEE/SP 14th Workshop on Statistical Signal Processing | 2007

Sparse Signal Reconstruction from Noisy Compressive Measurements using Cross Validation

Petros T. Boufounos; Marco F. Duarte; Richard G. Baraniuk

Compressive sensing is a new data acquisition technique that aims to measure sparse and compressible signals at close to their intrinsic information rate rather than their Nyquist rate. Recent results in compressive sensing show that a sparse or compressible signal can be reconstructed from very few incoherent measurements. Although the sampling and reconstruction process is robust to measurement noise, all current reconstruction methods assume some knowledge of the noise power or the acquired signal to noise ratio. This knowledge is necessary to set algorithmic parameters and stopping conditions. If these parameters are set incorrectly, then the reconstruction algorithms either do not fully reconstruct the acquired signal (underfitting) or try to explain a significant portion of the noise by distorting the reconstructed signal (overfitting). This paper explores this behavior and examines the use of cross validation to determine the stopping conditions for the optimization algorithms. We demonstrate that by designating a small set of measurements as a validation set it is possible to optimize these algorithms and reduce the reconstruction error. Furthermore we explore the trade-off between using the additional measurements for cross validation instead of reconstruction.


asilomar conference on signals, systems and computers | 2009

Greedy sparse signal reconstruction from sign measurements

Petros T. Boufounos

This paper presents Matched Sign Pursuit (MSP), a new greedy algorithm to perform sparse signal reconstruction from signs of signal measurements, i.e., measurements quantized to 1-bit. The algorithm combines the principle of consistent reconstruction with greedy sparse reconstruction. The resulting MSP algorithm has several advantages, both theoretical and practical, over previous approaches. Although the problem is not convex, the experimental performance of the algorithm is significantly better compared to reconstructing the signal by treating the quantized measurement as values. Our results demonstrate that combining the principle of consistency with a sparsity prior outperforms approaches that use only consistency or only sparsity priors.


IEEE Transactions on Information Theory | 2011

Sparse Recovery From Combined Fusion Frame Measurements

Petros T. Boufounos; Gitta Kutyniok; Holger Rauhut

Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the success of new acquisition and processing techniques such as compressed sensing (CS). Fusion frames are very rich new signal representation methods that use collections of subspaces instead of vectors to represent signals. This work combines these exciting fields to introduce a new sparsity model for fusion frames. Signals that are sparse under the new model can be compressively sampled and uniquely reconstructed in ways similar to sparse signals using standard CS. The combination provides a promising new set of mathematical tools and signal models useful in a variety of applications. With the new model, a sparse signal has energy in very few of the subspaces of the fusion frame, although it does not need to be sparse within each of the subspaces it occupies. This sparsity model is captured using a mixed l1/l2 norm for fusion frames. A signal sparse in a fusion frame can be sampled using very few random projections and exactly reconstructed using a convex optimization that minimizes this mixed l1/l2 norm. The provided sampling conditions generalize coherence and RIP conditions used in standard CS theory. It is demonstrated that they are sufficient to guarantee sparse recovery of any signal sparse in our model. More over, a probabilistic analysis is provided using a stochastic model on the sparse signal that shows that under very mild conditions the probability of recovery failure decays exponentially with in creasing dimension of the subspaces.


IEEE Transactions on Information Theory | 2012

Universal Rate-Efficient Scalar Quantization

Petros T. Boufounos

Scalar quantization is the most practical and straightforward approach to signal quantization. However, it has been shown that scalar quantization of oversampled or compressively sensed signals can be inefficient in terms of the rate-distortion tradeoff, especially as the oversampling rate or the sparsity of the signal increases. In this paper, we modify the scalar quantizer to have discontinuous quantization regions. We demonstrate that with this modification it is possible to achieve exponential decay of the quantization error as a function of the oversampling rate instead of the quadratic decay exhibited by current approaches. Our approach is universal in the sense that prior knowledge of the signal model is not necessary in the quantizer design, only in the reconstruction. Thus, we demonstrate that it is possible to reduce the quantization error by incorporating side information on the acquired signal, such as sparse signal models or signal similarity with known signals. In doing so, we establish a relationship between quantization performance and the Kolmogorov entropy of the signal model.


data compression conference | 2007

Quantization of Sparse Representations

Petros T. Boufounos; Richard G. Baraniuk

Compressive sensing (CS) is a new signal acquisition technique for sparse and compressible signals. Rather than uniformly sampling the signal, CS computes inner products with randomized basis functions; the signal is then recovered by a convex optimization. Random CS measurements are universal in the sense that the same acquisition system is sufficient for signals sparse in any representation. This paper examines the quantization of strictly sparse, power-limited signals and concludes that CS with scalar quantization uses its allocated rate inefficiently. The results complement related work on the quantization of CS measurements of compressible signals.


international workshop on information forensics and security | 2011

Secure binary embeddings for privacy preserving nearest neighbors

Petros T. Boufounos; Shantanu Rane

We present a novel method to securely determine whether two signals are similar to each other, and apply it to approximate nearest neighbor clustering. The proposed method relies on a locality sensitive hashing scheme based on a secure binary embedding, computed using quantized random projections. Hashes extracted from the signals preserve information about the distance between the signals, provided this distance is small enough. If the distance between the signals is larger than a threshold, then no information about the distance is revealed. Theoretical and experimental justification is provided for this property. Further, when the randomized embedding parameters are unknown, then the mutual information between the hashes of any two signals decays to zero exponentially fast as a function of the ℓ2 distance between the signals. Taking advantage of this property, we suggest that these binary hashes can be used to perform privacy-preserving nearest neighbor search with significantly lower complexity compared to protocols which use the actual signals.


international conference on computer aided design | 2008

Post-silicon timing characterization by compressed sensing

Farinaz Koushanfar; Petros T. Boufounos; Davood Shamsi

We address post-silicon characterization of the unique gate delays and their timing distributions on each manufactured IC. Our proposed approach is based upon the new theory of compressed sensing. The first step in performing timing measurements is to find the sensitizable paths by traditional testing methods. Next, we show that the timing variations are sparse in the wavelet domain. The sparsity is exploited for estimation of the gate delays using the compressed sensing theory. This estimation method requires significantly less number of timing measurements compared to the case where the dependence between the gate delays is not directly integrated within the estimation framework. We discuss a number of applications for the new post-silicon timing characterization method. Experimental results on benchmark circuits show that using compressed sensing theory can characterize the post-silicon variations with a mean accurately of 95% in the pertinent sparse basis.

Collaboration


Dive into the Petros T. Boufounos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulugbek S. Kamilov

Mitsubishi Electric Research Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Vetro

Mitsubishi Electric Research Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mark A. Davenport

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhiksha Raj

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge