Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petter Persson is active.

Publication


Featured researches published by Petter Persson.


Nature | 2002

Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor

Joachim Schnadt; P.A. Brühwiler; L. Patthey; James N. O'Shea; Sven Södergren; Michael Odelius; Rajeev Ahuja; Olof Karis; M. Bässler; Petter Persson; Hans Siegbahn; S. Lunell; Nils Mårtensson

The ultrafast timescale of electron transfer processes is crucial to their role in many biological systems and technological devices. In dye-sensitized solar cells, the electron transfer from photo-excited dye molecules to nanostructured semiconductor substrates needs to be sufficiently fast to compete effectively against loss processes and thus achieve high solar energy conversion efficiencies. Time-resolved laser techniques indicate an upper limit of 20 to 100 femtoseconds for the time needed to inject an electron from a dye into a semiconductor, which corresponds to the timescale on which competing processes such as charge redistribution and intramolecular thermalization of excited states occur. Here we use resonant photoemission spectroscopy, which has previously been used to monitor electron transfer in simple systems with an order-of-magnitude improvement in time resolution, to show that electron transfer from an aromatic adsorbate to a TiO2 semiconductor surface can occur in less than 3 fs. These results directly confirm that electronic coupling of the aromatic molecule to its substrate is sufficiently strong to suppress competing processes.


Journal of Chemical Theory and Computation | 2006

Quantum Chemical Calculations of the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron Transfer Times in Dye-Sensitized Semiconductor Nanocrystals

Petter Persson; Maria J. Lundqvist; Ralph Ernstorfer; William A. Goddard; F. Willig

Electronic properties of dye-sensitized semiconductor nanocrystals, consisting of perylene (Pe) chromophores attached to 2 nm TiO2 nanocrystals via different anchor-cum-spacer groups, have been studied theoretically using density functional theory (DFT) cluster calculations. Approximate effective electronic coupling strengths for the heterogeneous electron-transfer interaction have been extracted from the calculated electronic structures and are used to estimate femtosecond electron-transfer times theoretically. Results are presented for perylenes attached to the TiO2 via formic acid (Pe-COOH), propionic acid (Pe-CH2-CH2-COOH), and acrylic acid (Pe-CH [Formula: see text] CH-COOH). The calculated electron transfer times are between 5 and 10 fs with the formic acid and the conjugated acrylic acid bridges and about 35 fs with the saturated propionic acid bridge. The calculated electron injection times are of the same order of magnitude as the corresponding experimental values and qualitatively follow the experimental trend with respect to the influence of the different substitutions on the injection times.


Nature Chemistry | 2015

Iron sensitizer converts light to electrons with 92% yield

Tobias Harlang; Yizhu Liu; Olga Gordivska; Lisa A. Fredin; Carlito S. Ponseca; Ping Huang; Pavel Chábera; Kasper Skov Kjær; Helena Mateos; Jens Uhlig; Reiner Lomoth; Reine Wallenberg; Stenbjörn Styring; Petter Persson; Villy Sundström; Kenneth Wärnmark

Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes. Here, we describe the development of an iron-nitrogen-heterocyclic-carbene sensitizer with an excited-state lifetime that is nearly a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band of titanium dioxide with a quantum yield of 92% from the (3)MLCT (metal-to-ligand charge transfer) state. These results open up possibilities to develop solar energy-converting materials based on abundant elements.


Journal of Physical Chemistry Letters | 2014

Exceptional Excited-State Lifetime of an Iron(II)-N-Heterocyclic Carbene Complex Explained.

Lisa A. Fredin; Mátyás Pápai; Emese Rozsályi; György Vankó; Kenneth Wärnmark; Villy Sundström; Petter Persson

Earth-abundant transition-metal complexes are desirable for sensitizers in dye-sensitized solar cells or photocatalysts. Iron is an obvious choice, but the energy level structure of its typical polypyridyl complexes, featuring low-lying metal-centered states, has made such complexes useless as energy converters. Recently, we synthesized a novel iron-N-heterocyclic carbene complex exhibiting a remarkable 100-fold increase of the lifetime compared to previously known iron(II) complexes. Here, we rationalize the measured excited-state dynamics with DFT and TD-DFT calculations. The calculations show that the exceptionally long excited-state lifetime (∼9 ps) is achieved for this Fe complex through a significant destabilization of both triplet and quintet metal-centered scavenger states compared to other Fe(II) complexes. In addition, a shallow (3)MLCT potential energy surface with a low-energy transition path from the (3)MLCT to (3)MC and facile crossing from the (3)MC state to the ground state are identified as key features for the excited-state deactivation.


Journal of Physical Chemistry A | 2008

Computational Study of the Lowest Triplet State of Ruthenium Polypyridyl Complexes Used in Artificial Photosynthesis.

O Borg; Sofia Godinho; Maria J. Lundqvist; Sten Lunell; Petter Persson

The potential energy surfaces of the first excited triplet state of some ruthenium polypyridyl complexes were investigated by means of density functional theory. Focus was placed on the interaction between the geometrical changes accompanying the photoactivity of these complexes when used as antenna complexes in artificial photosynthesis and dye-sensitized solar cells and the accompanying changes in electronic structure. The loss process (3)MLCT --> (3)MC can be understood by means of ligand-field splitting, traced down to the coordination of the central ruthenium atom.


Journal of Chemical Physics | 2000

N 1s x-ray absorption study of the bonding interaction of bi-isonicotinic acid adsorbed on rutile TiO2(110)

Petter Persson; Sten Lunell; P.A. Brühwiler; Joachim Schnadt; Sven Södergren; James N. O'Shea; Olof Karis; Hans Siegbahn; N. Mårtensson; M. Bässler; L. Patthey

N 1s x-ray absorption spectra of bi-isonicotinic acid (2,2′-bipyridine–4,4′-dicarboxylic acid) on rutile TiO2(110) have been studied experimentally and quantum chemically. Differences between multilayer and monolayer spectra are explained by the adsorbate bonding to the substrate. A connection to the electronic coupling in dye-sensitized electrochemical devices is made.


Langmuir | 2013

Development of a ReaxFF reactive force field for titanium dioxide/water systems.

Sung-Yup Kim; Nitin Kumar; Petter Persson; Jorge O. Sofo; Adri C. T. van Duin; James D. Kubicki

A new ReaxFF reactive force field has been developed to describe reactions in the Ti-O-H system. The ReaxFF force field parameters have been fitted to a quantum mechanical (QM) training set containing structures and energies related to bond dissociation energies, angle and dihedral distortions, and reactions between water and titanium dioxide, as well as experimental crystal structures, heats of formation, and bulk modulus data. Model configurations for the training set were based on DFT calculations on molecular clusters and periodic systems (both bulk crystals and surfaces). ReaxFF reproduces accurately the QM training set for structures and energetics of small clusters. ReaxFF also describes the relative energetics for rutile, brookite, and anatase. The results of ReaxFF match reasonably well with those of QM for water binding energies, surface energies, and H2O dissociation energy barriers. To validate this ReaxFF description, we have compared its performance against DFT/MD simulations for 1 and 3 monolayers of water interacting with a rutile (110) surface. We found agreement within a 10% error between the DFT/MD and ReaxFF water dissociation levels for both coverages.


Journal of Chemical Physics | 2004

Photodissociation of Bromobenzene, Dibromobenzene, and 1,3,5-Tribromobenzene

Ya-Jun Liu; Petter Persson; Hans O. Karlsson; Sten Lunell; Malin Kadi; Daniel Karlsson; Jan Davidsson

Quantum chemical calculations have been performed on the ground state and several low-lying excited states of bromobenzene, ortho-, meta-, and para-dibromobenzene, and 1,3,5-tribromobenzene using high-level ab initio and hybrid density-functional methods. Experimental observations of ultrafast predissociation in these molecules are clarified from extensive theoretical information about all low-energy potential-energy curves together with symmetry arguments. The intriguing observation that o- and m-dibromobenzene have two ultrafast predissociation channels while bromobenzene, p-dibromobenzene, and 1,3,5-tribromobenzene only have one such channel is explained from the calculated potential-energy curves. These show that the lowering of point-group symmetry from C2v to Cs along the main photodissociation reaction coordinate, which only occurs in o- and m-dibromobenzene, opens up a new predissociation channel. Dynamical quantum simulations based on the calculated potential-energy curves are used to estimate the coupling strength at the intersystem crossing point in bromobenzene.


Nature | 2017

A low-spin Fe( iii ) complex with 100-ps ligand-to-metal charge transfer photoluminescence

Pavel Chabera; Yizhu Liu; Om Prakash; Erling Thyrhaug; Amal El Nahhas; Alireza Honarfar; Sofia Essén; Lisa A. Fredin; Tobias Harlang; Kasper Skov Kjær; Karsten Handrup; Fredric Ericson; Hideyuki Tatsuno; Kelsey M. Morgan; Joachim Schnadt; Lennart Häggström; Tore Ericsson; Adam Sobkowiak; Sven Lidin; Ping Huang; Stenbjörn Styring; Jens Uhlig; Jesper Bendix; Reiner Lomoth; Villy Sundström; Petter Persson; Kenneth Wärnmark

Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.


Journal of Chemical Physics | 2012

Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups.

Jingrui Li; Haobin Wang; Petter Persson; Michael Thoss

Photoinduced electron transfer processes in perylene-titanium dioxide dye-semiconductor systems are studied. In particular, the influence of saturated and unsaturated aliphatic spacer groups inserted between the chromophore and the semiconductor substrate is investigated. The study is based on a recently developed method that combines first-principles electronic structure calculations to characterize the dye-semiconductor systems and accurate multilayer multiconfiguration time-dependent Hartree simulations to reveal the underlying nonadiabatic dynamics. The results show that, in agreement with previous experimental studies, the spacer groups may affect the electron transfer dynamics significantly. Furthermore, the influence of electronic-vibrational coupling on the electron transfer dynamics and absorption spectra is discussed.

Collaboration


Dive into the Petter Persson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Abrahamsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kasper Skov Kjær

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge