Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phan Trieu is active.

Publication


Featured researches published by Phan Trieu.


Journal of Cell Science | 2006

Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells.

Rebois Rv; Robitaille M; Galés C; Denis J. Dupré; Alessandra Baragli; Phan Trieu; Nathalie Ethier; Michel Bouvier; Terence E. Hébert

Bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments revealed that heterotrimeric G proteins and their effectors were found in stable complexes that persisted during signal transduction. Adenylyl cyclase, Kir3.1 channel subunits and several G-protein subunits (Gαs, Gαi, Gβ1 and Gγ2) were tagged with luciferase (RLuc) or GFP, or the complementary fragments of YFP (specifically Gβ1-YFP1-158 and Gγ2-YFP159-238, which heterodimerize to produce fluorescent YFP-Gβ1γ2). BRET was observed between adenylyl-cyclase-RLuc or Kir3.1-RLuc and GFP-Gγ2, GFP-Gβ1 or YFP-Gβ1γ2. Gα subunits were also stably associated with both effectors regardless of whether or not signal transduction was initiated by a receptor agonist. Although BRET between effectors and Gβγ was increased by receptor stimulation, our data indicate that these changes are likely to be conformational in nature. Furthermore, receptor-sensitive G-protein-effector complexes could be detected before being transported to the plasma membrane, providing the first direct evidence for an intracellular site of assembly.


Cellular Signalling | 2011

Nuclear β-adrenergic receptors modulate gene expression in adult rat heart.

George Vaniotis; Danny Del Duca; Phan Trieu; Charles Rohlicek; Terence E. Hébert; Bruce G. Allen

Both β(1)- and β(3)-adrenergic receptors (β(1)ARs and β(3)ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69-78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus.


Methods | 2008

Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells.

R. Victor Rebois; Mélanie Robitaille; Darlaine Pétrin; Peter Zylbergold; Phan Trieu; Terence E. Hébert

A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100A of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.


Molecular Pharmacology | 2009

Intracellular potassium stabilizes human ether-a-go-go-related gene channels for export from endoplasmic reticulum.

Lu Wang; Adrienne T. Dennis; Phan Trieu; François Charron; Natalie Ethier; Terence E. Hébert; Xiaoping Wan; Eckhard Ficker

Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na+/K+ pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K+—either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media—is sufficient to disrupt hERG trafficking. In K+-depleted cells, hERG trafficking can be restored by permeating K+ or Rb+ ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K+]i-mediated conformational defect directly in the hERG channel protein.


Journal of Molecular and Cellular Cardiology | 2013

Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors

George Vaniotis; Irina Glazkova; Clémence Merlen; Carter Smith; Louis Villeneuve; David Chatenet; Michel Therien; Alain Fournier; Artavazd Tadevosyan; Phan Trieu; Stanley Nattel; Terence E. Hébert; Bruce G. Allen

At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.


Cellular Signalling | 2008

Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of GαS

Alessandra Baragli; Maria-Laura Grieco; Phan Trieu; Louis Villeneuve; Terence E. Hébert

Recent studies have demonstrated that adenylyl cyclase isoforms can form both homo- and heterodimers and that this may be the basic functional unit of these enzymes (see Cooper, D.M.F. and Crossthwaite, A.J. (2006) Trends. Pharmacol. Sci. 8:426-431). Here, we show that adenylyl cyclases 2 and 5 can form a functional heterodimeric complex in HEK293 cells using a combination of BRET, confocal imaging, co-immunoprecipitation and assays of adenylyl cyclase activity. The AC2/5 complex is formed constitutively and is stable in the presence of receptor or forskolin stimulation. The complex formed by AC2/5 is also much more sensitive to the presence of Galpha(s) and forskolin than either of the parent AC isoforms themselves. Finally, we also show that this complex can be detected in native tissues as AC2 and AC5 were localized to the same structures in adult mouse ventricular myocytes and neonatal mouse cardiac fibroblasts and could be co-immunoprecipitated from lysates of mouse heart.


Molecular Endocrinology | 2013

Novel, Gel-free Proteomics Approach Identifies RNF5 and JAMP as Modulators of GPCR Stability

Sébastien Roy; Irina Glazkova; Louis Fréchette; Christian Iorio-Morin; Chantal Binda; Darlaine Pétrin; Phan Trieu; Mélanie Robitaille; Stephane Angers; Terence E. Hébert

The maturation and folding of G protein-coupled receptors are governed by mechanisms that remain poorly understood. In an effort to characterize these biological events, we optimized a novel, gel-free proteomic approach to identify partners of the β2-adrenergic receptor (β2AR). In addition to a number of known interacting proteins such as heterotrimeric G protein subunits, this allowed us to identify proteins involved in endoplasmic reticulum (ER) QC of the receptor. Among β2AR-associated proteins is Ring finger protein 5 (RNF5), an E3 ubiquitin ligase anchored to the outer membrane of the ER. Coimmunoprecipitation assays confirmed, in a cellular context, the interaction between RNF5 and the β2AR as well as the prostaglandin D2 receptor (DP). Confocal microscopy revealed that DP colocalized with RNF5 at the ER. Coexpression of RNF5 with either receptor increased levels of their expression, whereas small interfering RNA-mediated knockdown of endogenous RNF5 promoted the opposite. RNF5 did not modulate the ubiquitination state of β2AR or DP. Instead, RNF5 ubiquitinated JNK-associated membrane protein (JAMP), a protein that recruits the proteasome to the ER membrane and that is negatively regulated by RNF5-mediated ubiquitination. JAMP coimmunoprecipitated with both β2AR and DP and decreased total receptor protein levels through proteasomal degradation. Expression of DP, a receptor largely retained in the ER, promoted proteasome recruitment by JAMP. Degradation of both receptors via JAMP was increased when RNF5 was depleted. Our data suggest that RNF5 regulates the turnover of specific G protein-coupled receptors by ubiquitinating JAMP and preventing proteasome recruitment.


The Journal of Thoracic and Cardiovascular Surgery | 2009

Association of neonatal hypoxia with lasting changes in left ventricular gene expression: An animal model

Danny Del Duca; Guoruey Wong; Phan Trieu; Demetra Rodaros; Athanasios Kouremenos; Artavazd Tadevosyan; George Vaniotis; Louis Villeneuve; Christo I. Tchervenkov; Stanley Nattel; Bruce G. Allen; Terence E. Hébert; Charles Rohlicek

OBJECTIVE Innovations in pediatric cardiovascular surgery have resulted in significant improvements in survival for children with congenital heart disease. In adults with such disease, however, surgical morbidity and mortality remain significant. We hypothesized that hypoxemia in early life causes lasting changes in gene expression in the developing heart and that such changes may persist into later life, affecting the physiology of the adult myocardium. METHODS Microarray expression analyses were performed with left ventricular tissue from 10- and 90-day-old rats exposed to hypoxia (inspired oxygen fraction 0.12) for the first 10 days after birth then subsequently reared in ambient air and with tissue from age-matched rats reared entirely in ambient air. Changes in expression of selected genes were confirmed with real-time reverse transcriptase polymerase chain reaction. Left ventricular cardiomyocytes were isolated from adult animals in both groups, and cellular morphology and viability were compared. RESULTS Microarray analyses revealed significant changes in 1945 and 422 genes in neonates and adults, respectively. Changes in genes associated with adaptive vascular remodeling and energy homeostasis, as well as regulation of apoptosis, were confirmed by real-time reverse transcriptase polymerase chain reaction. The viability of cardiomyocytes isolated from hypoxic animals was significantly lower than in those from control animals (36.7% +/- 13.3% vs 85.0% +/- 2.9%, P = .024). CONCLUSIONS Neonatal hypoxia is associated with significant changes in left ventricular gene expression in both neonatal and adult rats. This may have physiologic implications for the adult myocardium.


Neuropharmacology | 2015

Dual allosteric modulation of opioid antinociceptive potency by α2A-adrenoceptors.

Anne Julie Chabot-Doré; Magali Millecamps; Lina Naso; Dominic Devost; Phan Trieu; Marjo Piltonen; Luda Diatchenko; Carolyn A. Fairbanks; George L. Wilcox; Terence E. Hébert; Laura S. Stone

Opioid and α2-adrenoceptor (AR) agonists are analgesic when administered in the spinal cord and show a clinically beneficial synergistic interaction when co-administered. However, α2-AR antagonists can also inhibit opioid antinociception, suggesting a complex interaction between the two systems. The α2A-AR subtype is necessary for spinal adrenergic analgesia and synergy with opioids for most agonist combinations. Therefore, we investigated whether spinal opioid antinociception and opioid-adrenergic synergy were under allosteric control of the α2A-AR. Drugs were administered intrathecally in wild type (WT) and α2A-knock-out (KO) mice and antinociception was measured using the hot water tail immersion or substance P behavioral assays. The α2A-AR agonist clonidine was less effective in α2A-KO mice in both assays. The absence of the α2A-AR resulted in 10-70-fold increases in the antinociceptive potency of the opioid agonists morphine and DeltII. In contrast, neither morphine nor DeltII synergized with clonidine in α2A-KO mice, indicating that the α2AAR has both positive and negative modulatory effects on opioid antinociception. Depletion of descending adrenergic terminals with 6-OHDA resulted in a significant decrease in morphine efficacy in WT but not in α2A-KO mice, suggesting that endogenous norepinephrine acts through the α2A-AR to facilitate morphine antinociception. Based on these findings, we propose a model whereby ligand-occupied versus ligand-free α2A-AR produce distinct patterns of modulation of opioid receptor activation. In this model, agonist-occupied α2A-ARs potentiate opioid analgesia, while non-occupied α2A-ARs inhibit opioid analgesia. Exploiting such interactions between the two receptors could lead to the development of better pharmacological treatments for pain management.


Cellular Signalling | 2016

PPIP5K1 interacts with the exocyst complex through a C-terminal intrinsically disordered domain and regulates cell motility.

Gayane Machkalyan; Phan Trieu; Darlaine Pétrin; Terence E. Hébert; Gregory J. Miller

Cellular signaling involves coordinated regulation of many events. Scaffolding proteins are crucial regulators of cellular signaling, because they are able to affect numerous events by coordinating specific interactions among multiple protein partners in the same pathway. Scaffolding proteins often contain intrinsically disordered regions (IDR) that facilitate the formation and function of distinct protein complexes. We show that PPIP5K1 contains an unusually long and evolutionarily conserved IDR. To investigate the biological role(s) of this domain, we identified interacting proteins using affinity purification coupled with mass spectrometry. Here, we report that PPIP5K1 is associated with a network of proteins that regulate vesicle-mediated transport. We further identified exocyst complex component 1 as a direct interactor with the IDR of PPIP5K1. Additionally, we report that knockdown of PPIP5K1 decreases motility of HeLa cells in a wound-healing assay. These results suggest that PPIP5K1 might play an important role in regulating function of exocyst complex in establishing cellular polarity and directional migration of cells.

Collaboration


Dive into the Phan Trieu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce G. Allen

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Miller

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge