Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phat X. Dinh is active.

Publication


Featured researches published by Phat X. Dinh.


Journal of Virology | 2010

The Minor Envelope Glycoproteins GP2a and GP4 of Porcine Reproductive and Respiratory Syndrome Virus Interact with the Receptor CD163

Phani B. Das; Phat X. Dinh; Israrul H. Ansari; Marcelo de Lima; Fernando A. Osorio; Asit K. Pattnaik

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) contains the major glycoprotein, GP5, as well as three other minor glycoproteins, namely, GP2a, GP3, and GP4, on the virion envelope, all of which are required for generation of infectious virions. To study their interactions with each other and with the cellular receptor for PRRSV, we have cloned each of the viral glycoproteins and CD163 receptor in expression vectors and examined their expression and interaction with each other in transfected cells by coimmunoprecipitation (co-IP) assay using monospecific antibodies. Our results show that a strong interaction exists between the GP4 and GP5 proteins, although weak interactions among the other minor envelope glycoproteins and GP5 have been detected. Both GP2a and GP4 proteins were found to interact with all the other GPs, resulting in the formation of multiprotein complex. Our results further show that the GP2a and GP4 proteins also specifically interact with the CD163 molecule. The carboxy-terminal 223 residues of the CD163 molecule are not required for interactions with either the GP2a or the GP4 protein, although these residues are required for conferring susceptibility to PRRSV infection in BHK-21 cells. Overall, we conclude that the GP4 protein is critical for mediating interglycoprotein interactions and, along with GP2a, serves as the viral attachment protein that is responsible for mediating interactions with CD163 for virus entry into susceptible host cell.


Proceedings of the National Academy of Sciences of the United States of America | 2011

RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses

Debasis Panda; Anshuman Das; Phat X. Dinh; Sakthivel Subramaniam; Debasis Nayak; Nicholas J. Barrows; James L. Pearson; Jesse Thompson; David L. Kelly; Istvan Ladunga; Asit K. Pattnaik

Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process.


Virology | 2011

Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response

Phani B. Das; Hiep L.X. Vu; Phat X. Dinh; Jonathan L. Cooney; Byungjoon Kwon; Fernando A. Osorio; Asit K. Pattnaik

The role of N-glycosylation of the three minor envelope glycoproteins (GP2, GP3, and GP4) of porcine reproductive and respiratory syndrome virus (PRRSV) on infectious virus production, interactions with the receptor CD163, and neutralizing antibody production in infected pigs was examined. By mutation of the glycosylation sites in these proteins, the studies show that glycan addition at N184 of GP2, N42, N50 and N131 of GP3 is necessary for infectious virus production. Although single-site mutants of GP4 led to infectious virus production, mutation of any two sites in GP4 was lethal. Furthermore, the glycosylation of GP2 and GP4 was important for efficient interaction with CD163. Unlike PRRSVs encoding hypoglycosylated form of GP5 that induced significantly higher levels of neutralizing antibodies in infected piglets, PRRSVs encoding hypoglycosylated forms of GP2, GP3 or GP4 did not. These studies reveal the importance of glycosylation of these minor GPs in the biology of PRRSV.


Journal of Virology | 2014

Interferon-Inducible Protein IFI35 Negatively Regulates RIG-I Antiviral Signaling and Supports Vesicular Stomatitis Virus Replication

Anshuman Das; Phat X. Dinh; Debasis Panda; Asit K. Pattnaik

ABSTRACT In a genome-wide small interfering RNA (siRNA) screen, we recently identified the interferon (IFN)-inducible protein 35 (IFI35; also known as IFP35) as a factor required for vesicular stomatitis virus (VSV) infection. Studies reported here were conducted to further understand the role and requirement of IFI35 in VSV infection. Consistent with the siRNA screening data, we found that depletion of IFI35 led to reduced VSV replication at the level of viral gene expression. Although no direct interaction of IFI35 with the viral replication machinery was observed, we found that IFI35 negatively regulated the host innate immune response and rescued poly(I·C)-induced inhibition of VSV replication. Promoter-driven reporter gene assays demonstrated that IFI35 overexpression suppressed the activation of IFN-β and ISG56 promoters, whereas its depletion had the opposite effect. Further investigation revealed that IFI35 specifically interacted with retinoic acid-inducible gene I (RIG-I) and negatively regulated its activation through mechanisms that included (i) suppression of dephosphorylation (activation) of RIG-I and (ii) proteasome-mediated degradation of RIG-I via K48-linked ubiquitination. Overall, the results presented here suggest a novel role for IFI35 in negative regulation of RIG-I-mediated antiviral signaling, which will have implications for diseases associated with excessive immune signaling. IMPORTANCE Mammalian cells employ a variety of mechanisms, including production of interferons (IFNs), to counteract invading pathogens. In this study, we identified a novel role for a cellular protein, IFN-inducible protein 35 (IFP35/IFI35), in negatively regulating the host IFN response during vesicular stomatitis virus (VSV) infection. Specifically, we found that IFI35 inhibited activation of the RNA sensor, the retinoic acid-inducible gene I (RIG-I), leading to inhibition of IFN production and thus resulting in better replication of VSV. The identification of a cellular factor that attenuates the IFN response will have implications toward understanding inflammatory diseases in humans that have been found to be associated with defects in the regulation of host IFN production, such as systemic lupus erythematosus and psoriasis.


Journal of Virology | 2011

Cellular Poly(C) Binding Proteins 1 and 2 Interact with Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1β and Support Viral Replication

Lalit K. Beura; Phat X. Dinh; Fernando A. Osorio; Asit K. Pattnaik

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine results in substantial economic losses to the swine industry worldwide. Identification of cellular factors involved in PRRSV life cycle not only will enable a better understanding of virus biology but also has the potential for the development of antiviral therapeutics. The PRRSV nonstructural protein 1 (nsp1) has been shown to be involved in at least two important functions in the infected hosts: (i) mediation of viral subgenomic (sg) mRNA transcription and (ii) suppression of the hosts innate immune response mechanisms. To further our understanding of the role of the viral nsp1 in these processes, using nsp1β, a proteolytically processed functional product of nsp1 as bait, we have identified the cellular poly(C)-binding proteins 1 and 2 (PCBP1 and PCBP2) as two of its interaction partners. The interactions of PCBP1 and PCBP2 with nsp1β were confirmed both by coimmunoprecipitation in infected cells and/or in plasmid-transfected cells and also by in vitro binding assays. During PRRSV infection of MARC-145 cells, the cytoplasmic PCBP1 and PCBP2 partially colocalize to the viral replication-transcription complexes. Furthermore, recombinant purified PCBP1 and PCBP2 were found to bind the viral 5′ untranslated region (5′UTR). Small interfering RNA (siRNA)-mediated silencing of PCBP1 and PCBP2 in cells resulted in significantly reduced PRRSV genome replication and transcription without adverse effect on initial polyprotein synthesis. Overall, the results presented here point toward an important role for PCBP1 and PCBP2 in regulating PRRSV RNA synthesis.


Journal of Virology | 2013

Induction of Stress Granule-Like Structures in Vesicular Stomatitis Virus-Infected Cells

Phat X. Dinh; Lalit K. Beura; Phani B. Das; Debasis Panda; Anshuman Das; Asit K. Pattnaik

ABSTRACT Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.


Journal of Virology | 2010

Induction of interferon and interferon signaling pathways by replication of defective interfering particle RNA in cells constitutively expressing vesicular stomatitis virus replication proteins.

Debasis Panda; Phat X. Dinh; Lalit K. Beura; Asit K. Pattnaik

ABSTRACT We show here that replication of defective interfering (DI) particle RNA in HEK293 cells stably expressing vesicular stomatitis virus (VSV) replication proteins potently activates interferon (IFN) and IFN signaling pathways through upregulation of IFN-β promoter, IFN-stimulated response element (ISRE) promoter, and NF-κB promoter activities. Replication of DI particle RNA, not mere expression of the viral replication proteins, was found to be critical for induction of IFN and IFN signaling. The stable cells supporting replication of DI RNA described in this report will be useful in further examining the innate immune signaling pathways and the host cell functions in viral genome replication.


Journal of Virology | 2013

Heterogeneous Nuclear Ribonucleoprotein K Supports Vesicular Stomatitis Virus Replication by Regulating Cell Survival and Cellular Gene Expression

Phat X. Dinh; Anshuman Das; Rodrigo Franco; Asit K. Pattnaik

ABSTRACT The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus.


Virology | 2015

Trim21 regulates Nmi-IFI35 complex-mediated inhibition of innate antiviral response

Anshuman Das; Phat X. Dinh; Asit K. Pattnaik

In this study, using an immunoprecipitation coupled with mass spectrometry approach, we have identified the E3 ubiquitin ligase Trim21 as an interacting partner of IFI35 and Nmi. We found that this interaction leads to K63-linked ubiquitination on K22 residue of Nmi, but not IFI35. Using domain deletion analysis, we found that the interaction is mediated via the coiled-coil domain of Nmi and the carboxyl-terminal SPRY domain of Trim21. Furthermore, we show that depletion of Trim21 leads to significantly reduced interaction of Nmi with IFI35, which results in the abrogation of the negative regulatory function of the Nmi-IFI35 complex on innate antiviral signaling. Thus, Trim21 appears to be a critical regulator of the functions of the Nmi-IFI35 complex. Overall, the results presented here uncover a new mechanism of regulation of the Nmi-IFI35 complex by Trim21, which may have implications for various autoimmune diseases associated uncontrolled antiviral signaling.


Virology | 2012

A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus.

Phat X. Dinh; Debasis Panda; Phani B. Das; Subash C. Das; Anshuman Das; Asit K. Pattnaik

Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.

Collaboration


Dive into the Phat X. Dinh's collaboration.

Top Co-Authors

Avatar

Asit K. Pattnaik

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Anshuman Das

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Debasis Panda

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phani B. Das

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Fernando A. Osorio

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Byungjoon Kwon

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Debasis Nayak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hiep L.X. Vu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Israrul H. Ansari

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge