Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phil F. Cheng is active.

Publication


Featured researches published by Phil F. Cheng.


Nature Communications | 2015

The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors

Daniel Zingg; Julien Debbache; Simon M. Schaefer; Eylul Tuncer; Sandra C Frommel; Phil F. Cheng; Natalia Arenas-Ramirez; Jessica Haeusel; Yudong Zhang; Mario Bonalli; Michael T. McCabe; Caretha L. Creasy; Mitchell P. Levesque; Onur Boyman; Raffaella Santoro; Olga Shakhova; Reinhard Dummer; Lukas Sommer

Increased activity of the epigenetic modifier EZH2 has been associated with different cancers. However, evidence for a functional role of EZH2 in tumorigenesis in vivo remains poor, in particular in metastasizing solid cancers. Here we reveal central roles of EZH2 in promoting growth and metastasis of cutaneous melanoma. In a melanoma mouse model, conditional Ezh2 ablation as much as treatment with the preclinical EZH2 inhibitor GSK503 stabilizes the disease through inhibition of growth and virtually abolishes metastases formation without affecting normal melanocyte biology. Comparably, in human melanoma cells, EZH2 inactivation impairs proliferation and invasiveness, accompanied by re-expression of tumour suppressors connected to increased patient survival. These EZH2 target genes suppress either melanoma growth or metastasis in vivo, revealing the dual function of EZH2 in promoting tumour progression. Thus, EZH2-mediated epigenetic repression is highly relevant especially during advanced melanoma progression, which makes EZH2 a promising target for novel melanoma therapies.


Nature | 2016

sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance

Amanpreet Kaur; Marie R. Webster; Katie Marchbank; Reeti Behera; Abibatou Ndoye; Curtis H. Kugel; Vanessa Dang; Jessica Appleton; Michael P. O'Connell; Phil F. Cheng; Alexander Valiga; Rachel Morissette; Nazli B. McDonnell; Luigi Ferrucci; Andrew V. Kossenkov; Katrina Meeth; Hsin Yao Tang; Xiangfan Yin; William H. Wood; Elin Lehrmann; Kevin G. Becker; Keith T. Flaherty; Dennie T. Frederick; Jennifer A. Wargo; Zachary A. Cooper; Michael T. Tetzlaff; Courtney W. Hudgens; Katherine M. Aird; Rugang Zhang; Xiaowei Xu

Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in β-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.


Journal of Investigative Dermatology | 2013

Hypoxia Contributes to Melanoma Heterogeneity by Triggering HIF1α-Dependent Phenotype Switching

Daniel S. Widmer; Keith S. Hoek; Phil F. Cheng; Ossia M. Eichhoff; Thomas Biedermann; Marieke I.G. Raaijmakers; Silvio Hemmi; Reinhard Dummer; Mitchell P. Levesque

We have previously reported a model for melanoma progression in which oscillation between melanoma cell phenotypes characterized by invasion or proliferation is fundamental to tumor heterogeneity and disease progression. In this study we examine the possible role of hypoxia as one of the microenvironmental influences driving metastatic progression by promoting a switch from a proliferative to an invasive phenotype. Immunohistochemistry on primary human cutaneous melanoma biopsies showed intratumoral heterogeneity for cells expressing melanocytic markers, and a loss of these markers correlated with hypoxic regions. Furthermore, we show that the downregulation of melanocytic markers is dependent on hypoxia inducible factor 1α (HIF1α), a known regulator of the hypoxic response. In vitro invasion assays showed that a hypoxic environment increases the invasiveness of proliferative melanoma cell cultures in a HIF1α-dependent manner. In contrast, invasive phenotype melanoma cells showed no increase in invasive potential upon exposure to hypoxia. Thus, exposure of proliferative melanoma cells to hypoxic microenvironments is sufficient, in a HIF1α-dependent manner, to downregulate melanocytic marker expression and increase their invasive potential.


Pigment Cell & Melanoma Research | 2012

Systematic classification of melanoma cells by phenotype‐specific gene expression mapping

Daniel S. Widmer; Phil F. Cheng; Ossia M. Eichhoff; Benedetta Belloni; Marie C. Zipser; Natalie C. Schlegel; Delphine Javelaud; Alain Mauviel; Reinhard Dummer; Keith S. Hoek

There is growing evidence that the metastatic spread of melanoma is driven not by a linear increase in tumorigenic aggressiveness, but rather by switching back and forth between two different phenotypes of metastatic potential. In vitro these phenotypes are respectively defined by the characteristics of strong proliferation/weak invasiveness and weak proliferation/strong invasiveness. Melanoma cell phenotype is tightly linked to gene expression. Taking advantage of this, we have developed a gene expression–based tool for predicting phenotype called Heuristic Online Phenotype Prediction. We demonstrate the predictive utility of this tool by comparing phenotype‐specific signatures with measurements of characteristics of melanoma phenotype‐specific biology in different melanoma cell lines and short‐term cultures. We further show that 86% of 536 tested melanoma lines and short‐term cultures are significantly associated with the phenotypes we describe. These findings reinforce the concept that a two‐state system, as described by the phenotype switching model, underlies melanoma progression.


PLOS Genetics | 2015

Antagonistic cross-regulation between Sox9 and Sox10 controls an anti-tumorigenic program in melanoma.

Olga Shakhova; Phil F. Cheng; Pravin J. Mishra; Daniel Zingg; Simon M. Schaefer; Julien Debbache; Jessica Häusel; Claudia Matter; Theresa Guo; Sean Davis; Paul S. Meltzer; Daniela Mihic-Probst; Holger Moch; Michael Wegner; Glenn Merlino; Mitchell P. Levesque; Reinhard Dummer; Raffaella Santoro; Paolo Cinelli; Lukas Sommer

Melanoma is the most fatal skin cancer, but the etiology of this devastating disease is still poorly understood. Recently, the transcription factor Sox10 has been shown to promote both melanoma initiation and progression. Reducing SOX10 expression levels in human melanoma cells and in a genetic melanoma mouse model, efficiently abolishes tumorigenesis by inducing cell cycle exit and apoptosis. Here, we show that this anti-tumorigenic effect functionally involves SOX9, a factor related to SOX10 and upregulated in melanoma cells upon loss of SOX10. Unlike SOX10, SOX9 is not required for normal melanocyte stem cell function, the formation of hyperplastic lesions, and melanoma initiation. To the contrary, SOX9 overexpression results in cell cycle arrest, apoptosis, and a gene expression profile shared by melanoma cells with reduced SOX10 expression. Moreover, SOX9 binds to the SOX10 promoter and induces downregulation of SOX10 expression, revealing a feedback loop reinforcing the SOX10 low/SOX9 high ant,m/ii-tumorigenic program. Finally, SOX9 is required in vitro and in vivo for the anti-tumorigenic effect achieved by reducing SOX10 expression. Thus, SOX10 and SOX9 are functionally antagonistic regulators of melanoma development.


Clinical Cancer Research | 2015

Hedgehog Pathway Inhibitors Promote Adaptive Immune Responses in Basal Cell Carcinoma

Atsushi Otsuka; Jil Dreier; Phil F. Cheng; Mirjam Nägeli; Holger Lehmann; Lea Felderer; Ian J. Frew; Shigeto Matsushita; Mitchell P. Levesque; Reinhard Dummer

Purpose: Basal cell carcinomas (BCCs) are tumors ignored by immune surveillance. Activated Hedgehog (Hh) signaling within primary cilia is a key driver in the pathogenesis of BCCs. We examined immune alterations during treatment with systemic Hh inhibitors. Experimental Design: We investigated biopsies from patients with BCC before (23 patients) and after 4 weeks of treatment (5 patients) with Hh signaling inhibitor. Ber-Ep4, BCL-2, Ki-67, CD4, CD8, MHC class I, HLA-DR-class II, and SOX9 were analyzed by immunohistochemistry. Primary cilia were analyzed by double immunofluorescence of acetylated tubulin and SOX9. Differential gene expression for 84 cytokines and chemokines was analyzed in 3 patients. Results: After 4 weeks of treatment, we found reduction of Ki-67, SOX9, Ber-EP4, and BCL-2 expression in tumors associated with morphologic signs of squamous differentiation. In addition, the number of cilia-positive BCC cells was significantly decreased. An upregulation of MHC I expression on the cell membranes of residual tumor cells and an influx of CD4+, HLA-DR-class II+, and CD8+ cells with invasion into the tumor cell nests were found. Finally, qPCR arrays showed the differential expression of genes involved in modulating immune responses. Conclusions: We show that Hh pathway inhibitor–induced tumor regression is accompanied by a dynamic change of the microenvironment with a disruption of immune privilege involving an influx of cytotoxic T cells, activation of the adaptive immune functions, and a profound alteration of the local chemokine/cytokine network. Clin Cancer Res; 21(6); 1289–97. ©2015 AACR.


Molecular Cancer Therapeutics | 2015

Ingenol Mebutate Signals via PKC/MEK/ERK in Keratinocytes and Induces Interleukin Decoy Receptors IL1R2 and IL13RA2

Sandra N. Freiberger; Phil F. Cheng; Guergana Iotzova-Weiss; Johannes Neu; Qinxiu Liu; Piotr Dziunycz; John R. Zibert; Reinhard Dummer; Kresten Skak; Mitchell P. Levesque; Günther F.L. Hofbauer

Squamous cell carcinoma (SCC) is the second most common human skin cancer and the second leading cause of skin cancer–related death. Recently, a new compound, ingenol mebutate, was approved for treatment of actinic keratosis, a precursor of SCC. As the mechanism of action is poorly understood, we have further investigated the mechanism of ingenol mebutate–induced cell death. We elucidate direct effects of ingenol mebutate on primary keratinocytes, patient-derived SCC cells, and a SCC cell line. Transcriptional profiling followed by pathway analysis was performed on ingenol mebutate–treated primary keratinocytes and patient-derived SCC cells to find key mediators and identify the mechanism of action. Activation of the resulting pathways was confirmed in cells and human skin explants and supported by a phosphorylation screen of treated primary cells. The necessity of these pathways was demonstrated by inhibition of certain pathway components. Ingenol mebutate inhibited viability and proliferation of all keratinocyte-derived cells in a biphasic manner. Transcriptional profiling identified the involvement of PKC/MEK/ERK signaling in the mechanism of action and inhibition of this signaling pathway rescued ingenol mebutate–induced cell death after treatment with 100 nmol/L ingenol mebutate, the optimal concentration for the first peak of response. We found the interleukin decoy receptors IL1R2 and IL13RA2 induced by ingenol mebutate in a PKC/MEK/ERK–dependent manner. Furthermore, siRNA knockdown of IL1R2 and IL13RA2 partially rescued ingenol mebutate–treated cells. In conclusion, we have shown that ingenol mebutate–induced cell death is mediated through the PKCδ/MEK/ERK pathway, and we have functionally linked the downstream induction of IL1R2 and IL13RA2 expression to the reduced viability of ingenol mebutate–treated cells. Mol Cancer Ther; 14(9); 2132–42. ©2015 AACR.


PLOS ONE | 2015

Analysis of BRAF and NRAS Mutation Status in Advanced Melanoma Patients Treated with Anti-CTLA-4 Antibodies: Association with Overall Survival?

Joanna Mangana; Phil F. Cheng; Katja Schindler; Benjamin Weide; Ulrike Held; Anna L. Frauchiger; Emanuella Romano; Katharina C. Kähler; Sima Rozati; Markus Rechsteiner; Holger Moch; Olivier Michielin; Claus Garbe; Axel Hauschild; Christoph Hoeller; Reinhard Dummer; Simone M. Goldinger

Ipilimumab and tremelimumab are human monoclonal antibodies (Abs) against cytotoxic T-lymphocyte antigen-4 (CTLA-4). Ipilimumab was the first agent to show a statistically significant benefit in overall survival in advanced melanoma patients. Currently, there is no proven association between the BRAFV600 mutation and the disease control rate in response to ipilimumab. This analysis was carried out to assess if BRAFV600 and NRAS mutation status affects the clinical outcome of anti-CTLA-4-treated melanoma patients. This is a retrospective multi-center analysis of 101 patients, with confirmed BRAF and NRAS mutation status, treated with anti-CTLA-4 antibodies from December 2006 until August 2012. The median overall survival, defined from the treatment start date with the anti-CTLA-4. Abs-treatment to death or till last follow up, of BRAFV600 or NRAS mutant patients (n = 62) was 10.12 months (95% CI 6.78–13.2) compared to 8.26 months (95% CI 6.02–19.9) in BRAFV600/NRASwt subpopulation (n = 39) (p = 0.67). The median OS of NRAS mutated patients (n = 24) was 12.1 months and although was prolonged compared to the median OS of BRAF mutated patients (n = 38, mOS = 8.03 months) or BRAFV600/NRASwt patients (n = 39, mOS = 8.26 months) the difference didn’t reach statistical significance (p = 0.56). 69 patients were able to complete 4 cycles of anti-CTLA-4 treatment. Of the 24 patients treated with selected BRAF- or MEK-inhibitors, 16 patients received anti-CTLA 4 Abs following either a BRAF or MEK inhibitor with only 8 of them being able to finish 4 cycles of treatment. Based on our results, there is no difference in the median OS in patients treated with anti-CTLA-4 Abs implying that the BRAF/NRAS mutation status alone is not sufficient to predict the outcome of patients treated with anti-CTLA-4 Abs.


Swiss Medical Weekly | 2015

Data mining The Cancer Genome Atlas in the era of precision cancer medicine.

Phil F. Cheng; Reinhard Dummer; Mitchell P. Levesque

The Cancer Genome Atlas (TCGA) has given researchers and clinicians unprecedented access to many different cancers through multiple platforms that include exome sequencing, comparative genomic hybridisation (CGH) arrays, DNA methylation arrays, RNA sequencing, reverse protein phase arrays (RPPA), and clinical features. Most data are available to the public in their raw and processed forms; however, analysis and interpretation of these data require specialised training and software. To address this problem, online tools such as cBioportal, canEvolve, GDAC firehose, PROGgeneV2, and UCSC Cancer browser have been developed by various groups to explore and perform analyses on the datasets that are easily understandable by basic researchers and clinicians. In this mini-review, we give an overview of the datasets available from TCGA and the public tools available for integrative analysis of survival with the genomic and transcriptomic datasets, and introduce a tool being developed by our group to analyse the datasets within TCGA.


Genome Biology | 2015

Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma

Phil F. Cheng; Olga Shakhova; Daniel S. Widmer; Ossia M. Eichhoff; Daniel Zingg; Sandra C Frommel; Benedetta Belloni; Marieke I.G. Raaijmakers; Simone M. Goldinger; Raffaella Santoro; Silvio Hemmi; Lukas Sommer; Reinhard Dummer; Mitchell P. Levesque

BackgroundMelanoma is the most fatal skin cancer displaying a high degree of molecular heterogeneity. Phenotype switching is a mechanism that contributes to melanoma heterogeneity by altering transcription profiles for the transition between states of proliferation/differentiation and invasion/stemness. As phenotype switching is reversible, epigenetic mechanisms, like DNA methylation, could contribute to the changes in gene expression.ResultsIntegrative analysis of methylation and gene expression datasets of five proliferative and five invasion melanoma cell cultures reveal two distinct clusters. SOX9 is methylated and lowly expressed in the highly proliferative group. SOX9 overexpression results in decreased proliferation but increased invasion in vitro. In a B16 mouse model, sox9 overexpression increases the number of lung metastases. Transcriptional analysis of SOX9-overexpressing melanoma cells reveals enrichment in epithelial to mesenchymal transition (EMT) pathways. Survival analysis of The Cancer Genome Atlas melanoma dataset shows that metastatic patients with high expression levels of SOX9 have significantly worse survival rates. Additional survival analysis on the targets of SOX9 reveals that most SOX9 downregulated genes have survival benefit for metastatic patients.ConclusionsOur genome-wide DNA methylation and gene expression study of 10 early passage melanoma cell cultures reveals two phenotypically distinct groups. One of the genes regulated by DNA methylation between the two groups is SOX9. SOX9 induces melanoma cell invasion and metastasis and decreases patient survival. A number of genes downregulated by SOX9 have a negative impact on patient survival. In conclusion, SOX9 is an important gene involved in melanoma invasion and negatively impacts melanoma patient survival.

Collaboration


Dive into the Phil F. Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge