Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phil J. Murray is active.

Publication


Featured researches published by Phil J. Murray.


Advances in Agronomy | 2010

Phosphorus Solubilization and Potential Transfer to Surface Waters from the Soil Microbial Biomass Following Drying–Rewetting and Freezing–Thawing

Martin Blackwell; P.C. Brookes; N. de la Fuente-Martinez; H. Gordon; Phil J. Murray; K. E. Snars; J. K. Williams; Roland Bol; Philip M. Haygarth

Abstract Drying–rewetting and freezing–thawing are two of the most common forms of abiotic perturbations experienced by soils, and can result in the solubilization of phosphorus (P). There is increasing interest in one particular component of soil P that may be especially susceptible to such stresses: the soil microbial biomass. We examine the evidence for the soil microbial biomass acting as a significant source of P in soils and surface waters by studying the literature on the processes responsible for its solubilization and transfer, resulting from abiotic perturbations. These perturbations have been shown to kill up to circa 70% of the total microbial biomass in some soils, and in some cases nearly all the additional P solubilized has been attributed to the microbial biomass. The degree to which the soil microbial biomass is affected by abiotic perturbations is highly dependent upon many variables, not the least degree, duration, and temporal patterns of stress, as well as the soil type. It is hypothesized that while abiotic perturbations can solubilize large quantities of P from the soil microbial biomass in some soils, only a small proportion is likely to find its way from the soil to surface waters. This is not to say that this small proportion is not significant with regard to surface water quality and nutrient loss from the soil, and may become more prevalent under future climatic change. We conclude that it is likely that only extreme conditions will elicit large responses with regard to the solubilization and transfer of phosphorus to surface waters.


Advances in Agronomy | 2010

Interactions among agricultural production and other ecosystem services delivered from European temperate grassland systems.

Emma S. Pilgrim; C. J. A. Macleod; Martin Blackwell; Roland Bol; David V. Hogan; David Chadwick; Laura Cardenas; T.H. Misselbrook; Philip M. Haygarth; Richard E. Brazier; Phil J. Hobbs; Chris J. Hodgson; Steve C. Jarvis; Jennifer A. J. Dungait; Phil J. Murray; L. G. Firbank

Global demand for food is increasing as is the recognition that this must be achieved with minimal negative impacts on the environment or other ecosystem services (ESs). Here we develop an understanding of the relationships among ESs delivered within temperate agricultural grassland systems in lowland Europe. We reviewed the refereed literature on pair-wise interactions between nine different ESs. These were agricultural production, climate regulation, air quality regulation, water quality regulation, hydrological regulation, soil erosion regulation, nutrient cycling, biodiversity conservation, and landscape quality. For each pair, we sought information on how each ES responds to changes in the other. Each interaction was assigned to one of five categories: (i) no direct relationship between the driving ES on the responding ES, (ii) the driving ES has a negative impact on the responding ES, (iii) the driving ES has a positive impact on the responding ES, (iv) the evidence of direction of effect is inconclusive, because of either inadequate information or contradictions in the literature, and (v) there is no current evidence in the current literature for a relationship. Negative relationships resulted only from the effects of increasing the intensity of agricultural production on other ESs. Available evidence infers that erosion regulation and good nutrient cycling were the only two driving ESs shown to enhance agricultural production implying that their protection will enhance our ability to meet future food needs. In order for agriculture to become more sustainable, we need to develop agricultural methods that can minimize the negative impacts of these win–lose relationships.


Journal of Applied Ecology | 2016

Modest enhancements to conventional grassland diversity improve the provision of pollination services

Katherine A. Orford; Phil J. Murray; Ian Philip Vaughan; Jane Memmott

Summary Grassland for livestock production is a major form of land use throughout Europe and its intensive management threatens biodiversity and ecosystem functioning in agricultural landscapes. Modest increases to conventional grassland biodiversity could have considerable positive impacts on the provision of ecosystem services, such as pollination, to surrounding habitats. Using a field‐scale experiment in which grassland seed mixes and sward management were manipulated, complemented by surveys on working farms and phytometer experiments, the impact of conventional grassland diversity and management on the functional diversity and ecosystem service provision of pollinator communities were investigated. Increasing plant richness, by the addition of both legumes and forbs, was associated with significant enhancements in the functional diversity of grassland pollinator communities. This was associated with increased temporal stability of flower–visitor interactions at the community level. Visitation networks revealed pasture species Taraxacum sp. (Wigg.) (dandelion) and Cirsium arvense (Scop.) (creeping thistle) to have the highest pollinator visitation frequency and richness. Cichorium intybus (L.) (chichory) was highlighted as an important species having both high pollinator visitation and desirable agronomic properties. Increased sward richness was associated with an increase in the pollination of two phytometer species; Fragaria × ananassa (strawberry) and Silene dioica (red campion), but not Vicia faba (broad bean). Enhanced functional diversity, richness and abundance of the pollinator communities associated with more diverse neighbouring pastures were found to be potential mechanisms for improved pollination. Synthesis and applications. A modest increase in conventional grassland plant diversity with legumes and forbs, achievable with the expertise and resources available to most grassland farmers, could enhance pollinator functional diversity, richness and abundance. Moreover, our results suggest that this could improve pollination services and consequently surrounding crop yields (e.g. strawberry) and wildflower reproduction in agro‐ecosystems.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2015

Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss

Xu Pan; Matty P. Berg; Olaf Butenschoen; Phil J. Murray; Igor V. Bartish; Johannes H. C. Cornelissen; Ming Dong; Andreas Prinzing

Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability.


Science of The Total Environment | 2017

Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model

Yuefen Li; Yi Liu; Paul Harris; Hadewij Sint; Phil J. Murray; Michael R. F. Lee; Lianhai Wu

The North Wyke Farm Platform (NWFP) generates large volumes of temporally-indexed data that provides a valuable test-bed for agricultural mathematical models in temperate grasslands. In our study, we used the primary datasets generated from the NWFP (https://nwfp.rothamsted.ac.uk/) to validate the SPACSYS model in terms of the dynamics of water loss and forage dry matter yield estimated through cutting. The SPACSYS model is capable of simulating soil water, carbon (C) and nitrogen (N) balance in the soil-plant-atmosphere system. The validated model was then used to simulate the responses of soil water, C and N to reseeding grass cultivars with either high sugar (Lolium perenne L. cv. AberMagic) or deep rooting (Festulolium cv. Prior) traits. Simulation results demonstrated that the SPACSYS model could predict reliably soil water, C and N cycling in reseeded grassland. Compared to AberMagic, the Prior grass could fix more C in the second year following reseeding, whereas less C was lost through soil respiration in the first transition year. In comparison to the grass cultivar of the permanent pasture that existed before reseeding, both grasses reduced N losses through runoff and contributed to reducing water loss, especially Prior in relation to the latter. The SPACSYS model could predict these differences as supported by the rich dataset from the NWFP, providing a tool for future predictions on less characterized pasture.


Frontiers in Ecology and Evolution | 2016

The distribution of soil insects across three spatial scales in agricultural grassland

Carly M. Benefer; Karzan S. D'Ahmed; Rod P. Blackshaw; Hadewij Sint; Phil J. Murray

The effects of specific environmental factors on abundance and distribution of some individual soil insect taxa is known, but how scale influences spatial distribution is less well evaluated, particularly at the community level. However, given that many soil insects are pests or beneficial natural enemies, and that collectively they play a role in soil processes, this information is of potential value for predictive modelling and in furthering our understanding of soil ecology and management. The objectives of this study were to characterize the spatial distribution, relative population sizes, effect of sampling scale and taxa co-occurrence on a range of soil insects at the family level over two years. Soil cores were taken from agricultural grassland soils across three different sampling scales (farm, field and core) using a systematic sampling approach. Spatial distribution was assessed using the variance-to-mean (VMR) ratio and taxa distribution plots and the contribution of scale, spatial (geographical location) and biotic (presence-absence of other species) factors determined using deviance partitioning. Tipulid larvae (leatherjackets) were the most abundant taxa in both years, but the composition of other Dipteran and Coleopteran taxa varied between years. The VMRs revealed differences in spatial distribution between taxa across scales and years, showing a range of underlying distributional patterns. Scale was the most important factor influencing species distributions, but a large proportion of deviance remained unexplained and there was much variation between taxa, suggesting biological and scale-specific factors are driving distributions, in agreement with a previous study.


Journal of Arid Land | 2018

Attribution of explanatory factors for change in soil organic carbon density in the native grasslands of Inner Mongolia, China

Dongyan Jin; Phil J. Murray; Xiaoping Xin; Yifei Qin; Baorui Chen; Gele Qing; Zhao Zhang; Ruirui Yan

The variation in soil organic carbon density (SOCD) has been widely documented at various spatial and temporal scales. However, an accurate method for examining the attribution of explanatory factors for change in SOCD is still lacking. This study aims to attribute and quantify the key climatic factors, anthropogenic activities, and soil properties associated with SOCD change in the native grasslands of Inner Mongolia, China, by comparing data between the 1960s and the 2010s. In 2007 and 2011, we resampled 142 soil profiles which were originally sampled during 1963–1964 in the native grasslands of Inner Mongolia. SOCD was determined in A horizon (eluvial horizon) of the soil. We selected the explanatory factors based on a random forest method, and explored the relationships between SOCD change and each of the explanatory factors using a linear mixed model. Our results indicated that the change in SOCD varied from the east to the west of Inner Mongolia, and SOCD was 18% lower in the 2010s than in the 1960s. The lower SOCD in the 2010s may primarily be attributed to the increasing in mean annual water surface evaporation, which explained approximately 10% and 50% of the total variation and explainable variation in the change in SOCD, respectively. The sand content of the soil is also a significant explanatory factor for the decrease in SOCD, which explained about 4% and 21% of the total variation and explainable variation in the change in SOCD, respectively. Furthermore, the collection of quantitative information on grazing frequency and duration may also help to improve our understanding of the anthropogenic factors that govern the change in SOCD.


Geoderma | 2018

Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model

Yi Liu; Yuefen Li; Paul Harris; Laura Cardenas; R Dunn; Hadewij Sint; Phil J. Murray; Michael R. F. Lee; Lianhai Wu

In this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, N2O fluxes and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement in an agricultural system. Results demonstrated that the new spatially distributed version of SPACSYS provided a worthy improvement in accuracy over the standard (single-point) version for biomass productivity. No difference in model prediction performance was observed for water run-off, reflecting the closed-system nature of this variable. Similarly, no difference in model prediction performance was found for N2O fluxes, but here the N2O predictions were noticeably poor in both cases. Further developmental work, informed by this studys findings, is proposed to improve model predictions for N2O. Soil moisture results with the spatially distributed version appeared promising but this promise could not be objectively verified.


Food and Energy Security | 2018

Root imaging showing comparisons in root distribution and ontogeny in novel Festulolium populations and closely related perennial ryegrass varieties

Michael W. Humphreys; John H. Doonan; Roger D. Boyle; Anyela C. Rodriguez; Christina L. Marley; Kevin Williams; Markku S. Farrell; Jason Brook; Dagmara Gasior; Dimitra Loka; Rosemary P. Collins; Athole H. Marshall; Debbie Allen; Rattan Yadav; Jennifer A. J. Dungait; Phil J. Murray; John Harper

Abstract The incorporation of new sophisticated phenotyping technologies within a crop improvement program allows for a plant breeding strategy that can include selections for major root traits previously inaccessible due to the challenges in their phenotype assessment. High‐throughput precision phenotyping technology is employed to evaluate root ontogeny and progressive changes to root architecture of both novel amphiploid and introgression lines of Festulolium over four consecutive months of the growing season and these compared under the same time frame to that of closely related perennial ryegrass (L. perenne) varieties. Root imaging using conventional photography and assembled multiple merged images was used to compare frequencies in root number, their distribution within 0–20 and 20–40 cm depths within soil columns, and progressive changes over time. The Festulolium hybrids had more extensive root systems in comparison with L. perenne, and this was especially evident at depth. It was shown that the acquisition of extensive root systems in Festulolium hybrids was not dependent on the presence of an entire Festuca genome. On the contrary, the most pronounced effect on root development within the four Festulolium populations studied was observed in the introgression line Bx509, where a single small genome sequence from F. arundinacea had been previously transferred onto its homoeologous site on the long arm of chromosome 3 of an otherwise complete L. perenne genome. This demonstrates that a targeted introgression‐breeding approach may be sufficient to confer a significant improvement in the root morphology in Lolium without a significant compromise to its genome integrity. The forage production of Bx509 was either higher (months 1–3) or equivalent to (month 4) that of its L. perenne parent control demonstrating that the enhanced root development achieved by the introgression line was without compromise to its agronomic performance.


31. Eucarpia Fodder Crops and Amenity Grasses Section Meeting | 2016

Enhancing the productivity in forage grasses on the European scale using interspecific hybridization

Marc Ghesquière; J. Baert; S. Barth; V. Cernoch; D. Grogan; Michael W. Humphreys; Phil J. Murray; Liv Østrem; D. Sokolovic; E. Paszkowski; Z. Zwierzykowski

Ryegrass x fescue interspecific hybridization (so-called Festulolium) has great potential for forage diversification because of its many amphiploid and introgression-bred forms. Festulolium breeding efforts aim to improve adaptation to mainly winter cold and summer drought through higher abiotic stress tolerance. This goal must be met with a minimum of compromise regarding productivity in the first years of full exploitation. To compare field performances, a 21-entry trial of Festulolium and controls of pure species has been ongoing since 2012 in eight European countries. The yield data collected in 2012 and 2013 in nine locations showed that the Festulolium cultivars performed on average quite well compared to pure species controls. In amphiploids, the annual yield appeared to be mainly driven by the Lolium sp. parent combined with F. pratensis (Fp); the Lm x Fp amphiploids performed thus far better on average than the Lp x Fp equivalents. The only amphiploid from F. glaucescens included in the study had an intermediate response over locations, which was closer to tall fescue than to F. pratensis. Interestingly, a broad variability for yield among the Lm x Fp cultivars appeared to be associated with climate interactions when cold, wet locations were contrasted with more temperate locations with early spring growth.

Collaboration


Dive into the Phil J. Murray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge