Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phil Kersten is active.

Publication


Featured researches published by Phil Kersten.


Science | 2012

The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

Dimitrios Floudas; Manfred Binder; Robert Riley; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Ángel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. de Vries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Paweł Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten

Dating Wood Rot Specific lineages within the basidiomycete fungi, white rot species, have evolved the ability to break up a major structural component of woody plants, lignin, relative to their non–lignin-decaying brown rot relatives. Through the deep phylogenetic sampling of fungal genomes, Floudas et al. (p. 1715; see the Perspective by Hittinger) mapped the detailed evolution of wood-degrading enzymes. A key peroxidase and other enzymes involved in lignin decay were present in the common ancestor of the Agaricomycetes. These genes then expanded through gene duplications in parallel, giving rise to white rot lineages. The enzyme family that enables fungi to digest lignin expanded around the end of the coal-forming Carboniferous period. Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

Diego Martinez; Jean F. Challacombe; Ingo Morgenstern; David S. Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Dueñas; Ángel T. Martínez; Phil Kersten; Kenneth E. Hammel; Amber Vanden Wymelenberg; Jill Gaskell; Erika Lindquist; Grzegorz Sabat; Sandra Splinter BonDurant; Luis F. Larrondo; Paulo Canessa; Rafael Vicuña; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; Antonio G. Pisabarro; José L. Lavín; José A. Oguiza; Emma R. Master; Bernard Henrissat; Pedro M. Coutinho; Paul Harris; Jon K. Magnuson

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Elena Fernández-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Timothy Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Ryu Jae San; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; José L. Lavín; José A. Oguiza

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


PLOS Genetics | 2014

Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

Chiaki Hori; Takuya Ishida; Kiyohiko Igarashi; Masahiro Samejima; Hitoshi Suzuki; Emma R. Master; Patricia Ferreira; Francisco J. Ruiz-Dueñas; Benjamin W. Held; Paulo Canessa; Luis F. Larrondo; Monika Schmoll; Irina S. Druzhinina; Christian P. Kubicek; Jill Gaskell; Phil Kersten; Franz J. St. John; Jeremy D. Glasner; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Anthony C. Mgbeahuruike; Andriy Kovalchuk; Fred O. Asiegbu; Gerald Lackner; Dirk Hoffmeister; Jorge Rencoret; Ana Gutiérrez; Hui Sun

Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. giganteas extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.


Applied and Environmental Microbiology | 2014

Temporal Alterations in the Secretome of the Selective Ligninolytic Fungus Ceriporiopsis subvermispora during Growth on Aspen Wood Reveal This Organism's Strategy for Degrading Lignocellulose

Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Phil Kersten; Michael D. Mozuch; Masahiro Samejima; Dan Cullen

ABSTRACT The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.


Fungal Genetics and Biology | 2014

Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes

Phil Kersten; Dan Cullen

Extracellular peroxide generation, a key component of oxidative lignocellulose degradation, has been attributed to various enzymes including the copper radical oxidases. Encoded by a family of structurally related sequences, the genes are widely distributed among wood decay fungi including three recently completed polypore genomes. In all cases, core catalytic residues are conserved, but five subfamilies are recognized. Glyoxal oxidase, the most intensively studied representative, has been shown physiologically connected to lignin peroxidase. Relatively little is known about structure-function relationships among more recently discovered copper radical oxidases. Nevertheless, differences in substrate preferences have been observed in one case and the proteins have been detected in filtrates of various wood-grown cultures. Such diversity may reflect adaptations to host cell wall composition and changing environmental conditions.


Applied and Environmental Microbiology | 2016

Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion

Jill Gaskell; Robert A. Blanchette; Philip E. Stewart; Sandra Splinter BonDurant; Marie Adams; Grzegorz Sabat; Phil Kersten; Dan Cullen

ABSTRACT Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose. IMPORTANCE The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls.


Archive | 2013

Recent Advances on the Genomics of Litter- and Soil-Inhabiting Agaricomycetes

Phil Kersten; Dan Cullen

Fungi, particularly the Agaricomycetes, play a pivotal role cycling nutrients in forest soils. Although these filamentous fungi are clearly responsible for lignocellulose decomposition, the underlying mechanisms remain uncertain. This article reviews current understanding of Agaricomycete physiology as it relates to lignocellulose conversions. Fresh insights into the mechanisms of plant cell wall degradation have been made possible by recently available genome sequences. For efficient lignin degradation, the repertoire of genes and expression analyses support an important role for high oxidation potential peroxidases working in conjunction with peroxide-generating oxidases. Generally associated with dead wood, some of these “white rot” fungi are also tree pathogens and litter-inhabiting saprophytes. In contrast, certain wood-decay fungi are unable to remove lignin but have adapted to rapidly depolymerize cellulose. Such decay patterns are typically classified as brown rot, and evidence suggests the involvement of small molecular oxidants such as hydroxyl radical. Uncertainty remains in part due to the dearth of experimental tools, but progress in transcriptomics, proteomics, and genetic transformation offers opportunities for rapid advances.


Genomics data | 2017

Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12

Jill Gaskell; Phil Kersten; Luis F. Larrondo; Paulo Canessa; Diego Martinez; David S. Hibbett; Monika Schmoll; Christian P. Kubicek; Ángel T. Martínez; Jagjit S. Yadav; Emma R. Master; Jon K. Magnuson; Debbie Yaver; Randy M. Berka; Kathleen Lail; Cindy Chen; Kurt LaButti; Matt Nolan; Anna Lipzen; Andrea Aerts; Robert Riley; Kerrie Barry; Bernard Henrissat; Robert A. Blanchette; Igor V. Grigoriev; Dan Cullen

Author(s): Gaskell, Jill; Kersten, Phil; Larrondo, Luis F; Canessa, Paulo; Martinez, Diego; Hibbett, David; Schmoll, Monika; Kubicek, Christian P; Martinez, Angel T; Yadav, Jagjit; Master, Emma; Magnuson, Jon Karl; Yaver, Debbie; Berka, Randy; Lail, Kathleen; Chen, Cindy; LaButti, Kurt; Nolan, Matt; Lipzen, Anna; Aerts, Andrea; Riley, Robert; Barry, Kerrie; Henrissat, Bernard; Blanchette, Robert; Grigoriev, Igor V; Cullen, Dan


Fungal Genetics and Biology | 2007

Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium

Phil Kersten; Dan Cullen

Collaboration


Dive into the Phil Kersten's collaboration.

Top Co-Authors

Avatar

Jill Gaskell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Dan Cullen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Grzegorz Sabat

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jagjit S. Yadav

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis F. Larrondo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Paulo Canessa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Christian P. Kubicek

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Monika Schmoll

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge