Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip A. Symonds is active.

Publication


Featured researches published by Philip A. Symonds.


Geological Society of America Special Papers | 2003

120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System

Anthony J. Crawford; S Meffre; Philip A. Symonds

We review the tectonic evolution of the SW Pacific east of Australia from ca 120 Ma until the present. A key factor that developed early in this interval and played a major role in the subsequent geodynamic history of this region was the calving off from eastern Australia of several elongate microcontinental ribbons, including the Lord Howe Rise and Norfolk-New Caledonia Ridge. These microcontinental ribbons were isolated from Australia and from each other during a protracted extension episode from ca 120 to 52 Ma, with oceanic crust accretion occurring from 85 to 52 Ma and producing the Tasman Sea and the South Loyalty Basin. Generation of these microcontinental ribbons and intervening basins was assisted by emplacement of a major mantle plume at 100 Ma beneath the southern part of the Lord Howe Rise, which in turn contributed to rapid and efficient eastward trench rollback. A major change in Pacific plate motion at ca 55 Ma initiated east-directed subduction along the recently extinct spreading centre in the South Loyalty Basin, generating boninitic lithosphere along probably more than 1000 km of plate boundary in this region, and growth of the Loyalty-Entrecasteaux arc. Continued subduction of South Loyalty Basin crust led to the arrival at about 38 Ma of the 70-60 million years old western volcanic passive margin of the Norfolk Ridge at the trench, and west-directed emplacement of the New Caledonia ophiolite. Lowermost allochthons of this ophiolite are Maastrichtian and Paleocene rift tholeiites derived from the underthrusting passive margin. Higher allochthonous sheets include a poorly exposed boninitic lava slice, which itself was overridden by the massive ultramafic sheets that cover large parts of New Caledonia and are derived from the colliding forearc of the Loyalty-Entrecasteaux arc. Post-collisional extensional tectonism exhumed the underthrust passive margin, parts of which have blueschist and eclogite facies metamorphic assemblages. Following locking of this subduction zone at 38-34 Ma, subduction jumped eastward, to form a new west-dipping subduction zone above which formed the Vitiaz arc, that contained elements which today are located in the Tongan, Fijian, Vanuatu and Solomons arcs. Several episodes of arc splitting fragmented the Vitiaz arc and produced first the South Fiji Basin (31-25 Ma) and later (10 Ma to present) the North Fiji Basin. Collision of the Ontong Java Plateau, a large igneous province, with the Solomons section of the Vitiaz arc resulted in a reversal of subduction polarity, and growth of the Vanuatu arc on clockwise-rotating, older Vitiaz arc and South Fiji Basin crust. Continued rollback of the trench fronting the Tongan arc since 6 Ma has split this arc and produced the Lau Basin-Havre Trough. This southwest Pacific style of crustal growth above a rolling-back slab is applied to the 600-220 Ma tectonic development of the Tasman Fold Belt System in southeastern Australia, and explains key aspects of the geological evolution of eastern Australia. In particular, collision between a plume-triggered 600 Ma volcanic passive margin and a 510-515 Ma boninitic forearc of an intra-oceanic arc had the same relative orientation and geological effects as that which produced New Caledonia. A new subduction system formed probably at least several hundred kilometres east of the collision zone and produced the Macquarie arc, in which the oldest lavas were erupted ca 480 Ma. Continued slab rollback induced regional extension and the growth of narrow linear troughs in the Macquarie arc, which persisted until terminal deformation of this fold belt in the late-Middle to Late Devonian. A similar pattern of tectonic development generated the New England Fold Belt between the Late Devonian and Late Triassic. Parts of the New England Fold Belt have been broken from Australia and moved oceanward to locations in New Zealand, and on the Lord Howe Rise and Norfolk-New Caledonia Rise, during the post- 120 Ma breakup. Given that the Tasman Fold Belt System grew between 600 and 220 Ma by crustal accretion like the southwest Pacific since 120 Ma, facing the open Pacific Ocean, we question whether the eastern (Australia-Antarctica) part of the Neoproterozoic Rodinian supercontinent was joined to Laurentia.


Geological Society, London, Special Publications | 2001

Nature of the continent-ocean transition on the non-volcanic rifted margin of the central Great Australian Bight

Jacques Sayers; Philip A. Symonds; Nicholas G. Direen; George Bernardel

Abstract A region of 50–120 km width defines the continent-ocean transition (COT) in the central Great Australian Bight. It is characterized by a thin apron of post-break-up sediments overlying complexly deformed sediments and intruded crust bounded landward by a basement ridge complex and oceanward by rough oceanic basement. Recently acquired deep reflection and refraction seismic data have significantly enhanced understanding of the COT and basement ridge. Modelled gravity and magnetic data, and features interpreted from seismic data, are consistent with aspects of extensional and break-up models proposed for the West Iberia margin. Many of the features and relationships observed beneath the outer margin of the central Great Australian Bight can be explained by extension within a lithosphere-scale ‘pure-shear’ environment involving four layers: brittle upper crust and upper mantle, and ductile lower crust and lower lithospheric mantle. The COT is interpreted to be underlain by extended continental lithosphere. Thus, the continent-ocean boundary is unequivocally defined between oceanic crust and the COT and appears to be associated with sea-floor spreading magnetic anomaly 33, indicating that break-up and sea-floor spreading did not commence until c. 83 Ma (early Campanian time), later than the currently accepted 95 Ma age. The major part of the basement ridge complex is probably a combination of serpentinized peridotites and mafic intrusions or extrusions derived by mantle upwelling and limited partial melting. The magmatic products of this process probably cooled during chron 34 producing a distinctive magnetic anomaly, but one that does not relate to break-up and sea-floor spreading.


Geological Society, London, Special Publications | 2007

Nature of the continent–ocean transition zone along the southern Australian continental margin: a comparison of the Naturaliste Plateau, SW Australia, and the central Great Australian Bight sectors

Nicholas G. Direen; Irina Borissova; Howard M. J. Stagg; Jim Colwell; Philip A. Symonds

Abstract We document the interpretation of three crustal sections from coincident deep seismic reflection, gravity and magnetic data acquired on Australias southern margin: one section from the Naturaliste Plateau and the Diamantina Zone; and two in the Great Australian Bight (GAB). Interpretations are based on an integrated study of deep multichannel seismic, gravity and magnetic data, together with sparse sonobuoy and dredging information. All interpreted sections of the margin show a transition from thinned continental crust, through a wide continent ocean transition zone (COTZ). In the GAB the transition is to slow sea-floor spreading oceanic crust that dates from breakup in the Campanian (c. 83 Ma); in the Naturaliste–Diamantina margin the earliest oceanic crust is undated. The COTZ on these margins is geologically and geophysically complex, but interpretation of all data, including dredge hauls, is consistent with the presence of a mixture of modified continental lower crust, breakup related volcanics and exhumed continental mantle. Serpentinized detachment faults are not well imaged, but have been inferred from high-amplitude magnetic signatures interpreted to arise from magnetite associated with the hydration of peridotites. Alternative models for the structure of the COTZ, involving either mafic underplating or aborted sea-floor spreading, have been explored, but are considered unlikely on this margin. Similarity in the final architecture of these margins has major implications for the nature of rifting in the Southern Rift System, and may point to the entire 4000 km-long system being non-volcanic in character. Second-order differences in geometry and morphology of the two areas studied are unlikely to be a function of strain rate. Instead, they probably reflect complexities owing to the multiple tectonic events that occurred during final Gondwanide fragmentation. The most dramatic of these is the impact of hotspot activity in the Kerguelen Plateau, which commenced some 50 Ma prior to final breakup in that sector.


Geological Society, London, Special Publications | 2013

Variations in rift symmetry: Cautionary examples from the Southern Rift System (Australia–Antarctica)

Nicholas G. Direen; Howard M. J. Stagg; Philip A. Symonds; Ian O. Norton

Abstract We present a synthesis based on the interpretation of two pairs of deep seismic reflection crustal sections within the Southern Rift System (SRS) separating Australia and Antarctica. One pair of sections is from the conjugate margins between the Great Australian Bight (GAB) and Wilkes Land, in the central sector of the SRS, which broke up in the Campanian. The second pair of conjugate sections is located approximately 400 km further east, between the Otway Basin and Terre Adélie, which probably broke up in Maastrichtian time. Interpretations are based on an integrated synthesis of deep multi-channel seismic, gravity and magnetic data, together with sparse sonobuoy and dredging information, and the conjugate sections are presented with the oceanic crust removed beyond the continent–ocean boundary (COB). At first order, both conjugate pairs show a transition from thinned continental crust, through a wide and internally complex continent–ocean transition zone (COTZ), which shows features in common with magma-poor rifted margins worldwide, such as basement ridges interpreted as exhumed subcontinental mantle. In the central GAB sector, the COTZ is symmetric around the point of break-up and displays a pair of mantle ridges, one on each margin, outboard of which lies a deep-water rift basin. Break-up has occurred in the centre of this basin in this sector of the SRS. In contrast, the Terre Adélie margin is nearly 600 km wide and shows an abandoned crustal megaboudin, the Adélie Rift Block. This block is underlain by interpreted middle crust, and appears to have a mantle ridge structure inboard, as well as an outboard exhumed mantle complex from which mylonitized harzburgite has been dredged. The conjugate margin of the Beachport Sub-basin is relatively narrow (c. 100 km wide) and does not appear to contain an exhumed mantle ridge, as observed along strike in the GAB. These observations from a single rift spreading compartment show that radically different break-up symmetries and margin architectures can result from an essentially symmetric rifting process involving multiple, paired detachment systems. This indicates the need for caution in interpreting causative mechanisms of rifting from limited conjugate sections in other rifts. We speculate that the underlying crustal composition, rheology and structural preconditioning play a significant role in partitioning strain during the transition to break-up.


Geochemistry Geophysics Geosystems | 2011

Dominant symmetry of a conjugate southern Australian and East Antarctic magma‐poor rifted margin segment

Nicholas G. Direen; Howard M. J. Stagg; Philip A. Symonds; Jim Colwell

Synthesis and modeling of published deep seismic and potential field data from the conjugate, magma-poor, rifted margins of the Great Australian Bight, southern Australia, and central Wilkes Land, East Antarctica, show that there is pronounced symmetry of structures in a 300 km wide zone straddling the axis of final breakup. This symmetry is observed consistently for a distance of some hundreds of kilometers along strike. From inboard to outboard, both margins comprise a narrow zone of attenuation of the crystalline continental crust; an approximately 4 km high basement ridge, interpreted as unroofed peridotites, at the location of maximum thinning of the continental crust; and a 60–70 km wide continent-ocean transition zone that contains a sedimentary basin that may be underlain by altered mantle and fragments of crystalline continental crust. The marked breakup symmetry described here is in contrast to the asymmetry of the Iberia-Newfoundland margin and is consistent with the operation of a symmetrical extensional detachment system deforming the whole crust in the center of the rift, as envisaged by some numerical models for the continental rifting process.


Australian Journal of Earth Sciences | 2008

Architecture of volcanic rifted margins: new insights from the Exmouth – Gascoyne margin, Western Australia

Nicholas G. Direen; Howard M. J. Stagg; Philip A. Symonds; Jim Colwell

Australias western continental margin formed during Gondwana breakup between Australia – Antarctica and India, leaving behind an evolving plate boundary with significant new magmatic crust accreted to the continental fragments. In this context, the margin segment from the outer Exmouth Plateau to the Gascoyne Abyssal Plain has been repeatedly studied as an example of volcanic margin formation. However, many recent analyses based on selective interpretation of geophysical datasets have come to conflicting conclusions regarding both the tectonic architecture and the age of breakup on this margin. These differences profoundly impact on models for both the global plate circuit and for the timing and extent of magmatism implicated in volcanic breakup processes. We present new interpretations of the distribution of magmatic and pre-rift rock packages in this margin, based on the integrated interpretation of two deep crustal transects with existing seismic-reflection, refraction, gravity, magnetic and geochemical data. Interpretations are constrained by data from sparse Ocean Drilling Program and petroleum-exploration drilling, and dredging. We find evidence for significant accumulation of magmatic rocks and their clastic derivatives infilling extensional fault-controlled basins developed in a broad volcanic-margin transition zone between the outer Exmouth Plateau and true oceanic crust. These rocks have distinctive seismic facies in the form of seaward-dipping reflector sequences, and are dense and magnetised. Most significantly, these packages give rise to potential-field anomalies that have previously been interpreted as due to seafloor spreading. Recognition of these packages in a volcanic-margin transition zone has implications for the recognition of the inboard edge of unequivocal oceanic crust, the oceanic – volcanic-margin boundary. The main locus of igneous activity in the volcanic-margin transition zone off the Exmouth Plateau is spatially offset from a previously recognised high-velocity zone, suggesting that these two phenomena may not be temporally related. Seismically imaged differences in total thinning and partitioning of thinning, between upper and lower crust, provide support for models of depth-dependent thinning previously proposed for this margin.


Archive | 1998

Volcanic Evolution of the Western Australian Continental Margin and its Implications for Basin Development

Philip A. Symonds; Sverre Planke; Øivind Frey; Jakob Skogseid


Geochemistry Geophysics Geosystems | 2003

Underthrusting at the Hjort Trench, Australian‐Pacific plate boundary: Incipient subduction?

Timothy A. Meckel; Millard F. Coffin; Sharon Mosher; Philip A. Symonds; George Bernardel; Paul Mann


Journal of Volcanology and Geothermal Research | 2008

Seismic volcanostratigraphy of the Gascoyne margin, Western Australia

S. S. Rey; Sverre Planke; Philip A. Symonds; Jan Inge Faleide


Archive | 2003

Geological framework of the Kerguelen Plateau and adjacent ocean basins

Irina Borissova; A.M.G. Moore; J. Sayers; R. Parums; Millard F. Coffin; Philip A. Symonds

Collaboration


Dive into the Philip A. Symonds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Mann

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Sharon Mosher

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge