Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip A. Watson is active.

Publication


Featured researches published by Philip A. Watson.


Science | 2009

Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer

Chris Tran; Samedy Ouk; Nicola J. Clegg; Yu Chen; Philip A. Watson; Vivek K. Arora; John Wongvipat; Peter Smith-Jones; Dongwon Yoo; Andrew Kwon; Teresa Wasielewska; Derek S. Welsbie; Charlie D. Chen; Celestia S. Higano; Tomasz M. Beer; David T. Hung; Howard I. Scher; Michael E. Jung; Charles L. Sawyers

A Second Act for Antiandrogens Men with advanced prostate cancer are often treated with antiandrogens; drugs that inhibit the activity of male hormones, such as testosterone, that help drive tumor growth. Many of these drugs act by functionally disrupting the androgen receptor (AR), a transcriptional regulator of cell proliferation, but tumors eventually become resistant to the drugs by expressing higher levels of the AR. Tran et al. (p. 787, published online 9 April) have developed a “second-generation” antiandrogen, a thiohydantoin called MDV3100, which binds the AR with high affinity. MDV3100 retains its anticancer activity in cell culture and in mouse models even when AR levels are elevated. The drug appears to act both by inhibiting translocation of the AR into the nucleus and by reducing its transcriptional activity. MDV3100 is being tested in patients with advanced prostate cancer, the first group of which have shown a decline in blood levels of a marker of cancer growth, prostate-specific antigen. A drug that binds to the androgen receptor acts by disrupting its activity in the cell nucleus. Metastatic prostate cancer is treated with drugs that antagonize androgen action, but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation, and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a Phase I/II clinical trial, 13 of 30 (43%) showed sustained declines (by >50%) in serum concentrations of prostate-specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.


eLife | 2013

Overcoming mutation-based resistance to antiandrogens with rational drug design

Minna D. Balbas; Michael J. Evans; David J. Hosfield; John Wongvipat; Vivek K. Arora; Philip A. Watson; Yu Chen; Geoffrey L. Greene; Yang Shen; Charles L. Sawyers

The second-generation antiandrogen enzalutamide was recently approved for patients with castration-resistant prostate cancer. Despite its success, the duration of response is often limited. For previous antiandrogens, one mechanism of resistance is mutation of the androgen receptor (AR). To prospectively identify AR mutations that might confer resistance to enzalutamide, we performed a reporter-based mutagenesis screen and identified a novel mutation, F876L, which converted enzalutamide into an AR agonist. Ectopic expression of AR F876L rescued the growth inhibition of enzalutamide treatment. Molecular dynamics simulations performed on antiandrogen–AR complexes suggested a mechanism by which the F876L substitution alleviates antagonism through repositioning of the coactivator recruiting helix 12. This model then provided the rationale for a focused chemical screen which, based on existing antiandrogen scaffolds, identified three novel compounds that effectively antagonized AR F876L (and AR WT) to suppress the growth of prostate cancer cells resistant to enzalutamide. DOI: http://dx.doi.org/10.7554/eLife.00499.001


Nature Reviews Cancer | 2015

Emerging Mechanisms of Resistance to Androgen Receptor Inhibitors in Prostate Cancer

Philip A. Watson; Vivek K. Arora; Charles L. Sawyers

During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.


Cancer Discovery | 2013

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers

William R. Polkinghorn; Joel S. Parker; Man X. Lee; Elizabeth M. Kass; Daniel E. Spratt; Phillip J. Iaquinta; Vivek K. Arora; Wei Feng Yen; Ling Cai; Deyou Zheng; Brett S. Carver; Yu Chen; Philip A. Watson; Neel Shah; Sho Fujisawa; Alexander G. Goglia; Anuradha Gopalan; Haley Hieronymus; John Wongvipat; Peter T. Scardino; Michael J. Zelefsky; Maria Jasin; Jayanta Chaudhuri; Simon N. Powell; Charles L. Sawyers

UNLABELLED We demonstrate that the androgen receptor (AR) regulates a transcriptional program of DNA repair genes that promotes prostate cancer radioresistance, providing a potential mechanism by which androgen deprivation therapy synergizes with ionizing radiation. Using a model of castration-resistant prostate cancer, we show that second-generation antiandrogen therapy results in downregulation of DNA repair genes. Next, we demonstrate that primary prostate cancers display a significant spectrum of AR transcriptional output, which correlates with expression of a set of DNA repair genes. Using RNA-seq and ChIP-seq, we define which of these DNA repair genes are both induced by androgen and represent direct AR targets. We establish that prostate cancer cells treated with ionizing radiation plus androgen demonstrate enhanced DNA repair and decreased DNA damage and furthermore that antiandrogen treatment causes increased DNA damage and decreased clonogenic survival. Finally, we demonstrate that antiandrogen treatment results in decreased classical nonhomologous end-joining. SIGNIFICANCE We demonstrate that the AR regulates a network of DNA repair genes, providing a potential mechanism by which androgen deprivation synergizes with radiotherapy for prostate cancer.


Science | 2017

SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer

Ping Mu; Zeda Zhang; Matteo Benelli; Wouter R. Karthaus; Elizabeth Hoover; Chi-Chao Chen; John Wongvipat; Sheng-Yu Ku; Dong Gao; Zhen Cao; Neel Shah; Elizabeth J. Adams; Wassim Abida; Philip A. Watson; Davide Prandi; Chun-Hao Huang; Elisa de Stanchina; Scott W. Lowe; Leigh Ellis; Himisha Beltran; Mark A. Rubin; David W. Goodrich; Francesca Demichelis; Charles L. Sawyers

Evading cancer drugs by identity fraud Prostate cancer growth is fueled by male hormones called androgens. Drugs targeting the androgen receptor (AR) are initially efficacious, but most tumors eventually become resistant (see the Perspective by Kelly and Balk). Mu et al. found that prostate cancer cells escaped the effects of androgen deprivation therapy through a change in lineage identity. Functional loss of the tumor suppressors TP53 and RB1 promoted a shift from AR-dependent luminal epithelial cells to AR-independent basal-like cells. In related work, Ku et al. found that prostate cancer metastasis, lineage switching, and drug resistance were driven by the combined loss of the same tumor suppressors and were accompanied by increased expression of the epigenetic regulator Ezh2. Ezh2 inhibitors reversed the lineage switch and restored sensitivity to androgen deprivation therapy in experimental models. Science, this issue p. 84, p. 78; see also p. 29 Prostate cancer cells escape androgen deprivation therapy by morphing into a cell type that does not require androgens. Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)–dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.


Cancer Research | 2007

Murine Cell Lines Derived from Pten Null Prostate Cancer Show the Critical Role of PTEN in Hormone Refractory Prostate Cancer Development

Jing Jiao; Shunyou Wang; Rong Qiao; Igor Vivanco; Philip A. Watson; Charles L. Sawyers; Hong Wu

PTEN mutations are among the most frequent genetic alterations found in human prostate cancers. Our previous works suggest that although precancerous lesions were found in Pten heterozygous mice, cancer progression and metastasis only happened when both alleles of Pten were deleted. To understand the molecular mechanisms underlying the role of PTEN in prostate cancer control, we generated two pairs of isogenic, androgen receptor (AR)-positive prostate epithelial lines from intact conditional Pten knock-out mice that are either heterozygous (PTEN-P2 and -P8) or homozygous (PTEN-CaP2 and PTEN-CaP8) for Pten deletion. Further characterization of these cells showed that loss of the second allele of Pten leads to increased anchorage-independent growth in vitro and tumorigenesis in vivo without obvious structural or numerical chromosome changes based on SKY karyotyping analysis. Despite no prior exposure to hormone ablation therapy, Pten null cells are tumorigenic in both male and female severe combined immunodeficiency mice. Furthermore, knocking down PTEN can convert the androgen-dependent Myc-CaP cell into androgen independence, suggesting that PTEN intrinsically controls androgen responsiveness, a critical step in the development of hormone refractory prostate cancer. Importantly, knocking down AR by shRNA in Pten null cells reverses androgen-independent growth in vitro and partially inhibited tumorigenesis in vivo, indicating that PTEN-controlled prostate tumorigenesis is AR dependent. These cell lines will serve as useful tools for understanding signaling pathways controlled by PTEN and elucidating the molecular mechanisms involved in hormone refractory prostate cancer formation.


Cancer Research | 2005

Context-Dependent Hormone-Refractory Progression Revealed through Characterization of a Novel Murine Prostate Cancer Cell Line

Philip A. Watson; Katharine Ellwood-Yen; J. King; John Wongvipat; Michelle M. LeBeau; Charles L. Sawyers

Insights into the molecular basis of hormone-refractory prostate cancer have principally relied on human prostate cancer cell lines, all of which were derived from patients who had already failed hormonal therapy. Recent progress in developing genetically engineered mouse prostate cancer models provides an opportunity to isolate novel cell lines from animals never exposed to hormone ablation, avoiding any potential bias conferred by the selective pressure of the castrate environment. Here we report the isolation of such a cell line (Myc-CaP) from a c-myc transgenic mouse with prostate cancer. Myc-CaP cells have an amplified androgen receptor gene despite no prior exposure to androgen withdrawal and they retain androgen-dependent transgene expression as well as androgen-dependent growth in soft agar and in mice. Reexpression of c-Myc from a hormone-independent promoter rescues growth in androgen-depleted agar but not in castrated mice, showing a clear distinction between the molecular requirements for hormone-refractory growth in vitro versus in vivo. Myc-CaP cells represent a unique reagent for dissecting discreet steps in hormone-refractory prostate cancer progression and show the general utility of using genetically engineered mouse models for establishing new prostate cancer cell lines.


Cancer Research | 2006

Neu-induced retroviral rat mammary carcinogenesis: a novel chemoprevention model for both hormonally responsive and nonresponsive mammary carcinomas.

Stephan Woditschka; Jill D. Haag; Jordy L. Waller; Dinelli M. Monson; Andrew A. Hitt; Heidi L. Brose; Rong Hu; Yun Zheng; Philip A. Watson; Kwanghee Kim; Mary J. Lindstrom; Bob Mau; Vernon E. Steele; Ronald A. Lubet; Michael N. Gould

Clinically relevant animal models of mammary carcinogenesis are crucial for the development and evaluation of new breast cancer chemopreventive agents. The neu-induced retroviral rat mammary carcinogenesis model is based on the direct in situ transfer of the activated neu oncogene into the mammary epithelium using a replication-defective retroviral vector. The resulting mammary carcinomas in intact Wistar-Furth rats exhibit a mixed hormonal response in the same proportion as has been observed in women. In intact rats, approximately 50% of mammary carcinomas can be prevented by tamoxifen treatment. In ovariectomized animals, the mammary carcinomas are hormonally nonresponsive and cannot be prevented by tamoxifen. We evaluated the efficacy of retinoic X receptor-selective retinoids (rexinoids) in this novel model of mammary carcinogenesis. The rexinoids LG100268 and bexarotene (LG1069, Targretin) were highly efficacious in the prevention of neu-induced mammary carcinomas. Dietary LG100268 at 100 mg/kg diet decreased tumor multiplicity by 32% (P = 0.0114) in intact rats and 50% (P < 0.0001) in ovariectomized rats. Bexarotene treatment at a dose of 250 mg/kg diet was associated with reductions in tumor multiplicity of 84% (P < 0.0001) and 86% (P < 0.0001) in intact and ovariectomized animals, respectively. In addition to tumor multiplicity, proliferation and apoptosis were modulated by bexarotene treatment independently of estrogen signaling. The neu-induced retroviral rat mammary carcinogenesis model represents a valuable addition to existing rodent chemoprevention models. The model is useful for assessing the efficacy of chemopreventive agents, specifically those compounds that target hormonally nonresponsive tumors.


The Journal of Nuclear Medicine | 2014

Annotating STEAP1 Regulation in Prostate Cancer with 89Zr Immuno-PET

Michael G. Doran; Philip A. Watson; Sarah M. Cheal; Daniel E. Spratt; John Wongvipat; Jeffrey M. Steckler; Jorge A. Carrasquillo; Michael J. Evans; Jason S. Lewis

Antibodies and antibody-drug conjugates targeting the cell surface protein 6 transmembrane epithelial antigen of prostate 1 (STEAP1) are in early clinical development for the treatment of castration-resistant prostate cancer (PCa). In general, antigen expression directly affects the bioactivity of therapeutic antibodies, and the biologic regulation of STEAP1 is unusually complicated in PCa. Paradoxically, STEAP1 can be induced or repressed by the androgen receptor (AR) in different human PCa models, while also expressed in AR-null PCa. Consequently, there is an urgent need to translate diagnostic strategies to establish which regulatory mechanism predominates in patients to situate the appropriate therapy within standard of care therapies inhibiting AR. Methods: To this end, we prepared and evaluated 89Zr-labeled MSTP2109A (89Zr-2109A), a radiotracer for PET derived from a fully humanized monoclonal antibody to STEAP1 in preclinical PCa models. Results: 89Zr-2109A specifically localized to the STEAP1-positive human PCa models CWR22Pc, 22Rv1, and PC3. Moreover, 89Zr-2109A sensitively measured treatment-induced changes (∼66% decline) in STEAP1 expression in CWR22PC in vitro and in vivo, a model we showed to express STEAP1 in an AR-dependent manner. Conclusion: These findings highlight the ability of immuno-PET with 89Zr-2109A to detect acute changes in STEAP1 expression and argue for an expansion of ongoing efforts to image PCa patients with 89Zr-2109A to maximize the clinical benefit associated with antibodies or antibody-drug conjugates to STEAP1.


Science Translational Medicine | 2016

Internalization of secreted antigen–targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen receptor axis

Daniel L. J. Thorek; Philip A. Watson; Sang Gyu Lee; Anson Ku; Stylianos Bournazos; Katharina Braun; Kwanghee Kim; Kjell Sjöström; Michael G. Doran; Urpo Lamminmäki; Elmer Santos; Darren Veach; Mesruh Turkekul; Emily Casey; Jason S. Lewis; Diane S. Abou; Marise R. Heerman van Voss; Peter T. Scardino; Sven-Erik Strand; Mary L. Alpaugh; Howard I. Scher; Hans Lilja; Steven M. Larson; David Ulmert

A radiolabeled antibody against a secreted antigen uses Fc receptor–mediated internalization for cancer imaging and therapy. Prostate cancer hide-and-seek Prostate cancer is typically treated by targeting the androgen receptor, at least initially, but there is no convenient way to monitor the receptor’s activity or to determine when a tumor is becoming resistant to treatment. Although the androgen receptor cannot be imaged directly at this time, Thorek et al. identified an enzyme called human kallikrein-related peptidase 2 (hK2), whose activation requires signaling through the androgen receptor pathway. The authors used a radiolabeled antibody against hK2 in mouse models and human tissues to accurately detect prostate cancer lesions, including bone metastases, and to monitor their status during the course of treatment. Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. Understanding this resistance is confounded by a lack of noninvasive means to assess AR activity in vivo. We report intracellular accumulation of a secreted antigen–targeted antibody (SATA) that can be used to characterize disease, guide therapy, and monitor response. AR-regulated human kallikrein-related peptidase 2 (free hK2) is a prostate tissue–specific antigen produced in prostate cancer and androgen-stimulated breast cancer cells. Fluorescent and radio conjugates of 11B6, an antibody targeting free hK2, are internalized and noninvasively report AR pathway activity in metastatic and genetically engineered models of cancer development and treatment. Uptake is mediated by a mechanism involving the neonatal Fc receptor. Humanized 11B6, which has undergone toxicological tests in nonhuman primates, has the potential to improve patient management in these cancers. Furthermore, cell-specific SATA uptake may have a broader use for molecularly guided diagnosis and therapy in other cancers.

Collaboration


Dive into the Philip A. Watson's collaboration.

Top Co-Authors

Avatar

Charles L. Sawyers

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John Wongvipat

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Ulmert

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hans Lilja

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jason S. Lewis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kwanghee Kim

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivek K. Arora

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Daniel L. J. Thorek

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Diane S. Abou

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dipti Mehta

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge