Philip C. De Witt Hamer
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip C. De Witt Hamer.
Journal of Clinical Oncology | 2012
Philip C. De Witt Hamer; Santiago Gil Robles; Aeilko H. Zwinderman; Hugues Duffau; Mitchel S. Berger
PURPOSE Surgery for infiltrative gliomas aims to balance tumor removal with preservation of functional integrity. The usefulness of intraoperative stimulation mapping (ISM) has not been addressed in randomized trials. This study addresses glioma surgery outcome on the basis of a meta-analysis of observational studies. METHODS A systematic search retrieved 90 reports published between 1990 and 2010 with 8,091 adult patients who had resective surgery for supratentorial infiltrative glioma, with or without ISM. Quality criteria consisted of postoperative neurologic examination details and follow-up timing. New postoperative neurologic deficits were categorized on the basis of timing and severity. Meta-analysis with a Bayesian random effects model determined summary event rates of deficits as well as gross total resection rate and eloquent locations. Meta-regression analysis explored heterogeneity among studies. RESULTS Late severe neurologic deficits were observed in 3.4% (95% CI, 2.3% to 4.8%) of patients after resections with ISM, and in 8.2% (95% CI, 5.7% to 11.4%) of patients after resections without ISM (adjusted odds ratio, 0.39; 95% CI, 0.23 to 0.64). The percentages of radiologically confirmed gross total resections were 75% (95% CI, 66% to 82%) with ISM and 58% (95% CI, 48% to 69%) without ISM. Eloquent locations were involved in 99.9% (95% CI, 99.9% to 100%) of resections with ISM and in 95.8% (95% CI, 73.1% to 99.8%) of resections without ISM. Relevant sources of heterogeneity among studies were ISM, continent, and academic setting. CONCLUSION Glioma resections using ISM are associated with fewer late severe neurologic deficits and more extensive resection, and they involve eloquent locations more frequently. This indicates that ISM should be universally implemented as standard of care for glioma surgery.
Cancer Cell | 2010
Shahryar E. Mir; Philip C. De Witt Hamer; Przemek M. Krawczyk; Leonora Balaj; An Claes; Johanna M. Niers; Angela A.G. van Tilborg; Aeilko H. Zwinderman; Dirk Geerts; Gertjan J. L. Kaspers; W. Peter Vandertop; Jacqueline Cloos; Bakhos A. Tannous; Pieter Wesseling; Jacob A. Aten; David P. Noske; Cornelis J. F. Van Noorden; Thomas Wurdinger
Kinases execute pivotal cellular functions and are therefore widely investigated as potential targets in anticancer treatment. Here we analyze the kinase gene expression profiles of various tumor types and reveal the wee1 kinase to be overexpressed in glioblastomas. We demonstrate that WEE1 is a major regulator of the G(2) checkpoint in glioblastoma cells. Inhibition of WEE1 by siRNA or small molecular compound in cells exposed to DNA damaging agents results in abrogation of the G(2) arrest, premature termination of DNA repair, and cell death. Importantly, we show that the small-molecule inhibitor of WEE1 sensitizes glioblastoma to ionizing radiation in vivo. Our results suggest that inhibition of WEE1 kinase holds potential as a therapeutic approach in treatment of glioblastoma.
Brain Structure & Function | 2013
Juan Martino; Philip C. De Witt Hamer; Mitchel S. Berger; Michael T. Lawton; Christine M. Arnold; Enrique Marco de Lucas; Hugues Duffau
The anatomy of the perisylvian component of the superior longitudinal fasciculus (SLF) has recently been reviewed by numerous diffusion tensor imaging tractography (DTI) studies. However, little is known about the exact cortical terminations of this tract. The aim of the present work is to isolate the different subcomponents of this tract with fiber dissection and DTI tractography, and to identify the exact cortical connections. Twelve postmortem human hemispheres (6 right and 6 left) were dissected using the cortex-sparing fiber dissection. In addition, three healthy brains were analyzed using DTI-based tractography software. The different components of the perisylvian SLF were isolated and the fibers were followed until the cortical terminations. Three segments of the perisylvian SLF were identified: (1) anterior segment, connecting the supramarginal gyrus and superior temporal gyrus with the precentral gyrus, (2) posterior segment, connecting the posterior portion of the middle temporal gyrus with the angular gyrus, and (3) long segment of the arcuate fasciculus that connects the middle and inferior temporal gyri with the precentral gyrus and posterior portion of the inferior and middle frontal gyri. In the present study, three different components of the perisylvian SLF were identified. For the first time, our dissections revealed that each component was connected to a specific cortical area within the frontal, parietal and temporal lobes. By accurately depicting not only the trajectory but also cortical connections of this bundle, it is possible to develop new insights into the putative functional role of this tract.
Clinical Cancer Research | 2011
Philip C. De Witt Hamer; Shahryar E. Mir; David P. Noske; Cornelis J. F. Van Noorden; Thomas Wurdinger
WEE1 kinase is a key molecule in maintaining G2–cell-cycle checkpoint arrest for premitotic DNA repair. Whereas normal cells repair damaged DNA during G1-arrest, cancer cells often have a deficient G1-arrest and largely depend on G2-arrest. The molecular switch for the G2–M transition is held by WEE1 and is pushed forward by CDC25. WEE1 is overexpressed in various cancer types, including glioblastoma and breast cancer. Preclinical studies with cancer cell lines and animal models showed decreased cancer cell viability, reduced tumor burden, and improved survival after WEE1 inhibition by siRNA or small molecule inhibitors, which is enhanced by combination with conventional DNA-damaging therapy, such as radiotherapy and/or cytostatics. Mitotic catastrophe results from premature entry into mitosis with unrepaired lethal DNA damage. As such, cancer cells become sensitized to conventional therapy by WEE1 inhibition, in particular those with insufficient G1-arrest due to deficient p53 signaling, like glioblastoma cells. One WEE1 inhibitor has now reached clinical phase I studies. Dose-limiting toxicity consisted of hematologic events, nausea and/or vomiting, and fatigue. The combination of DNA-damaging cancer therapy with WEE1 inhibition seems to be a rational approach to push cancer cells in mitotic catastrophe. Its safety and efficacy are being evaluated in clinical studies. Clin Cancer Res; 17(13); 4200–7. ©2011 AACR.
Statistical Applications in Genetics and Molecular Biology | 2008
Sandra Waaijenborg; Philip C. De Witt Hamer; Aeilko H. Zwinderman
Multiple changes at the DNA level are at the basis of complex diseases. Identifying the genetic networks that are influenced by these changes might help in understanding the development of these diseases. Canonical correlation analysis is used to associate gene expressions with DNA-markers and thus reveals sets of co-expressed and co-regulated genes and their associating DNA-markers. However, when the number of variables gets high, e.g. in the case of microarray studies, interpretation of these results can be difficult. By adapting the elastic net to canonical correlation analysis the number of variables reduces, and interpretation becomes easier, moreover, due to the grouping effect of the elastic net co-regulated and co-expressed genes cluster. Additionally, our adaptation works well in situations where the number of variables exceeds by far the number of subjects.
Journal of Neuro-oncology | 2012
Martin Klein; Hugues Duffau; Philip C. De Witt Hamer
Compared to classical oncological outcome measures such as time to progression and survival, the importance of cognitive functioning in patients with diffuse infiltrative brain tumors has only recently been recognized. Apart from the relatively low incidence and the invariably fatal outcome of gliomas, the general assumption that cognitive assessment is time-consuming and burdensome contributes to this notion. Our understanding of the effects of brain surgery on cognition, for instance, is largely based on studies in surgical patients with refractory epilepsy, with only a limited number of studies in surgical patients with gliomas. The impact of other factors affecting cognition in glioma patients such as direct tumor effects, radiotherapy and chemotherapy, and medical treatment, including anti-epileptic drugs and steroids, have been studied more extensively. The purpose of this paper is to provide an overview of cognition in patients with diffuse infiltrative gliomas and the impact of resective surgery as well as other tumor and treatment-related factors.
Neuro-oncology | 2010
Philip C. De Witt Hamer
The efficacy of small-molecule kinase inhibitors has recently changed standard clinical practice for several solid cancers. Glioblastoma is a solid cancer that universally recurs and unrelentingly results in death despite maximal surgery and radiotherapy with concomitant and adjuvant temozolomide. Several clinical studies using kinase inhibitors in glioblastoma have been reported. The present study systematically reviews the efficacy, toxicity, and tissue analysis of small-molecule kinase inhibitors in adult patients with glioblastoma as reported in published clinical studies and determines which kinases have been targeted by the inhibitors used in these studies. Publications were retrieved using a MEDLINE search and by screening meeting abstracts. A total of 60 studies qualified for inclusion, of which 25 were original reports. A total of 2385 glioblastoma patients receiving kinase inhibitors could be evaluated. The study designs included 2 phase III studies and 37 phase II studies. Extracted data included radiological response, progression-free survival, overall survival, toxicity, and biomarker analysis. The main findings were that (i) efficacy of small-molecule kinase inhibitors in clinical studies with glioblastoma patients does not yet warrant a change in standard clinical practice and (ii) 6 main kinase targets for inhibitors have been evaluated in these studies: EGFR, mTOR, KDR, FLT1, PKCbeta, and PDGFR.
Journal of Anatomy | 2011
Juan Martino; Philip C. De Witt Hamer; Francesco Vergani; Christian Brogna; Enrique Marco de Lucas; Alfonso Vazquez-Barquero; Juan A. García-Porrero; Hugues Duffau
Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex‐sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex‐sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)‐based tractography software. DTI fiber tract reconstructions were compared with cortex‐sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto‐occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo‐basal cortex. The UF crosses the limen insulae and connects the orbito‐frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex‐sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research.
Human Brain Mapping | 2011
Philip C. De Witt Hamer; Sylvie Moritz-Gasser; Peggy Gatignol; Hugues Duffau
Human brain pathways required for language processing are poorly known. A new white matter tract in humans, the middle longitudinal fascicle, has recently been anatomically determined by diffusion tensor imaging and suggested to be essential for language. Our aim is to determine the importance of the middle longitudinal fascicle for language processing. This study is based on 8 patients with glioma resection at least involving the superior temporal gyrus of the left dominant hemisphere. Language is systematically examined pre‐ and postoperatively at 3 months. Intraoperative electrostimulation is used to map cortical and subcortical structures as functional boundaries of the glioma resection, including those essential for language processing. The resections are extensive (on average 62 ml, ranging from 21 to 111 ml) and include a large part of the middle longitudinal fascicle in all patients. Intraoperatively, no interference with picture naming is observed by electrostimulation of the middle longitudinal fascicle, while in all patients the inferior fronto‐occipital fascicle is identified by eliciting semantic paraphasia as functional boundary. Postoperatively, no new permanent language deficits are detected by systematic language examination. Therefore, we suggest that the middle longitudinal fascicle may participate but is not essential for language processing. Hum Brain Mapp, 2011.
NeuroImage | 2014
Edwin van Dellen; Linda Douw; Arjan Hillebrand; Philip C. De Witt Hamer; Johannes C. Baayen; Jan J. Heimans; Jaap C. Reijneveld; Cornelis J. Stam
Seizure freedom after resective epilepsy surgery is not obtained in a substantial number of patients with medically intractable epilepsy. Functional neural network analysis is a promising technique for more accurate identification of the target areas for epilepsy surgery, but a better understanding of the correlations between changes in functional network organization due to surgery and postoperative seizure status is required. We explored these correlations in longitudinal magnetoencephalography (MEG) recordings of 20 lesional epilepsy patients. Resting-state MEG recordings were obtained at baseline (preoperatively; T0) and at 3-7 (T1) and 9-15months after resection (T2). We assessed frequency-specific functional connectivity and performed a minimum spanning tree (MST) network analysis. The MST captures the most important connections in the network. We found a significant positive correlation between functional connectivity in the lower alpha band and seizure frequency at T0, especially in regions where lesions were located. MST leaf fraction, a measure of integration of information in the network, was significantly increased between T0 and T2, only for the seizure-free patients. This is in line with previous work, which showed that lower functional network integration in lesional epilepsy patients is related to higher epilepsy burden. Finally, eccentricity and betweenness centrality, which are measures of hub-status, decreased between T0 and T2 in seizure free patients, also in regions that were anatomically close to resection cavities. Our results increase insight into functional network changes in successful epilepsy surgery and might eventually be utilized for optimization of neurosurgical approaches.