Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip C. Dooley is active.

Publication


Featured researches published by Philip C. Dooley.


Journal of Orthopaedic Research | 2009

Early fracture callus displays smooth muscle-like viscoelastic properties ex vivo: Implications for fracture healing

Stuart J. McDonald; Philip C. Dooley; Aaron Campbell. McDonald; Johannes A. Schuijers; Alexander Raymond. Ward; Brian L. Grills

Cells of early, fibrous callus in bone fractures possess much alpha smooth muscle actin. This callus contracts and relaxes; however, active and passive components of its force production have yet to be defined. We aimed to establish whether passive viscoelastic properties of early soft fracture callus are smooth muscle‐like in nature. Under anesthesia one rib was fractured in rats and calluses removed 7 days later for analysis. Urinary bladder detrusor muscle and Achilles tendon were also resected and analyzed. Force production in these tissues was measured using a force transducer when preparations were immersed in calcium‐free Krebs‐Henseleit solution (pH 7.4, 22°C). Viscoelastic responses were measured in each preparation in response to 50 µN increases and decreases in force after achieving basal tissue tension by preconditioning. Callus, bladder, and tendon all displayed varying, reproducible degrees of stress relaxation (SR) and reverse stress relaxation (RSR) (n = 7 for all groups). Hysteresis was observed in callus, with the first SR response significantly larger than that produced in subsequent stretches (p < 0.05). Callus SR responses were greater than tendon (p < 0.001) but less than bladder (p < 0.001). Callus RSR responses were greater than tendon (p < 0.001), but no significant difference was seen between RSR of callus and bladder. We concluded that early, soft callus displayed significant SR and RSR phenomena similar to smooth muscle tissue, and SR and RSR may be important in maintenance of static tension in early callus by promoting osteogenesis and fracture healing.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2000

Amino acids in haemolymph, single fibres and whole muscle from the claw of freshwater crayfish acclimated to different osmotic environments.

Philip C. Dooley; B.M Long; Jan M. West

The concentrations of free amino acids were measured in whole claw muscle, single fibres and haemolymph of Australian freshwater crayfish, Cherax destructor, during the intermoult stage. The average total pool of amino acids in short-sarcomere fibres (179 mmol kg(-1)) was 60% greater than in long-sarcomere fibres, due to higher concentrations of alanine, cysteine, glutamate, leucine and proline. The two fibre types exhibited differences in the banding pattern of the isoforms of troponin using gel electrophoresis. The average pool of amino acids in haemolymph was 2.7 mmol kg(-1). Cherax has symmetrical claws and the total pool of amino acids from whole muscles (approx. 79 mmol kg(-1)) was similar in left and right claw muscles. In animals acclimated to osmotic environments between 0 and 220 mOsm, the osmotic pressure of the haemolymph increased from 356 to 496 mOsm, but no systematic changes were observed in the amino acid profiles of muscles or haemolymph. The major findings were that (a) concentrations of amino acids differed between the two major fibre types in claw muscle and (b) amino acids in the muscle fibres did not play a major part in intracellular osmoregulation in Cherax, suggesting this species is an anisosmotic regulator.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002

Free amino acids in claw muscle and haemolymph from Australian freshwater crayfish at different stages of the moult cycle

Philip C. Dooley; Peter J. Crouch; Jan M. West

Amino acids were measured in claw muscle and haemolymph in the freshwater decapod crustacean, Cherax destructor, at different stages of the moult cycle. The total pool of amino acids in muscles from animals in intermoult (97+/-13 mmol kg(-1) muscle), premoult (80+/-20 mmol kg(-1)) and postmoult (97+/-19 mmol kg(-1)) were not significantly different. Despite the relatively stable total pool of amino acids, there were changes in the concentrations of alanine, glutamine and proline over the moult cycle. Compared to intermoult, claw muscles from animals in premoult had a lower concentration of proline, and animals in postmoult had higher concentrations of alanine and glutamine, but lower concentrations of proline. Concentrations of alanine and glutamine in claw muscle of animals in postmoult were higher and proline concentrations lower than in the same animals during the premoult stage. The concentration of proline in haemolymph was lower in animals in premoult and postmoult compared to intermoult. The total amino acid pool in the claw muscle of Cherax destructor did not change significantly over the moult which is distinctly different to the changes in amino acids reported in the claw muscles of marine decapod crustaceans.


Journal of Orthopaedic Research | 2011

α1 adrenergic receptor agonist, phenylephrine, actively contracts early rat rib fracture callus ex vivo

Stuart J. McDonald; Philip C. Dooley; Aaron Campbell. McDonald; Elvan Djouma; Johannes A. Schuijers; Alex R. Ward; Brian L. Grills

Early, soft fracture callus that links fracture ends together is smooth muscle‐like in nature. We aimed to determine if early fracture callus could be induced to contract and relax ex vivo by similar pathways to smooth muscle, that is, contraction via α1 adrenergic receptor (α1AR) activation with phenylephrine (PE) and relaxation via β2 adrenergic receptor (β2AR) stimulation with terbutaline. A sensitive force transducer quantified 7 day rat rib fracture callus responses in modified Krebs–Henseliet (KH) solutions. Unfractured ribs along with 7, 14, and 21 day fracture calluses were analyzed for both α1AR and β2AR gene expression using qPCR, whilst 7 day fracture callus was examined via immunohistochemistry for both α1AR and β2AR‐ immunoreactivity. In 7 day callus, PE (10−6 M) significantly induced an increase in force that was greater than passive force generated in calcium‐free KH (n = 8, mean 51% increase, 95% CI: 26–76%). PE‐induced contractions in calluses were attenuated by the α1AR antagonist, prazosin (10−6 M; n = 7, mean 5% increase, 95% CI: 2–11%). Terbutaline did not relax callus. Gene expression of α1ARs was constant throughout fracture healing; however, β2AR expression was down‐regulated at 7 days compared to unfractured rib (p < 0.01). Furthermore, osteoprogenitor cells of early fibrous callus displayed considerable α1AR‐like immunoreactivity but not β2AR‐like immunoreactivity. Here, we demonstrate for the first time that early fracture callus can be pharmacologically induced to contract. We propose that increased concentrations of α1AR agonists such as noradrenaline may tonically contract callus in vivo to promote osteogenesis.


Acta Orthopaedica | 2012

Transient expression of myofibroblast-like cells in rat rib fracture callus

Stuart J. McDonald; Philip C. Dooley; Aaron Campbell. McDonald; Johannes A. Schuijers; Alex R. Ward; Brian L. Grills

Background and purpose We have previously shown that early fracture callus of rat rib has viscoelastic and contractile properties resembling those of smooth muscle. The cells responsible for this contractility have been hypothesized to be myofibroblast-like in nature. In soft-tissue healing, force generated by contraction of myofibroblasts promotes healing. Accordingly, we tried to identify myofibroblast-like cells in early fibrous callus. Animals and methods Calluses from rat rib fractures were removed 7, 14, and 21 days after fracture and unfractured ribs acted as controls. All tissues were analyzed using qPCR and immunohistochemistry. We analyzed expression of smooth muscle- and myofibroblast-associated genes and proteins including alpha smooth muscle actin (αSMA), non-muscle myosin, fibronectin extra domain A variant (EDA-fibronectin), OB-cadherin, connexin-43, basic calponin (h1CaP), and h-caldesmon. Results In calluses at 7 days post-fracture, there were statistically significant increases in expression of αSMA mRNA (2.5 fold), h1CaP mRNA (2.1 fold), EDA-fibronectin mRNA (14 fold), and connexin-43 mRNA (1.8 fold) compared to unfractured ribs, and by 21 days post-fracture mRNA expression in calluses had decreased to levels approaching those in unfractured rib. Immunohistochemistry of 7 day fibrous callus localized calponin, EDA-fibronectin and co-immunolabeling of OB-cadherin and αSMA (thus confirming a myofibroblastic phenotype) within various cell populations. Interpretation This study provides further evidence that early rat rib callus is not only smooth muscle-like in nature but also contains a notable population of cells that have a distinct myofibroblastic phenotype. The presence of these cells indicates that in vivo contraction of early callus is a mechanism that may occur in fractures so as to facilitate healing, as it does in soft tissue wound repair.


Journal of Muscle Research and Cell Motility | 2004

Differential effects of arginine, glutamate and phosphoarginine on Ca2+-activation properties of muscle fibres from crayfish and rat

David W. Jame; Jan M. West; Philip C. Dooley; D. George Stephenson

The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute (“test”) or not (“control”). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l-1) significantly shifted the force–pCa curve by 0.08–0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9–10 mmol l-1) induced a significant shift of the force–pCa curve by 0.18–0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force–pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36–40 mmol l-1), like arginine affected the force–pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08–0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.


Muscle & Nerve | 1993

Recovery of muscle after different periods of denervation and treatments

David Finkelstein; Philip C. Dooley; Anthony R Luff


Journal of Molecular and Cellular Cardiology | 2004

Lidoflazine is a high affinity blocker of the HERG K(+)channel.

John M. Ridley; Philip C. Dooley; James T. Milnes; Harry J. Witchel; Jules C. Hancox


Journal of Orthopaedic Research | 2004

Early callus of fractured rib of rat contracts and relaxes ex vivo.

Philip C. Dooley; Melissa L. Howgate; Johannes A. Schuijers; Brian L. Grills


Journal of Musculoskeletal & Neuronal Interactions | 2002

Nerve growth factor and norepinephrine concentrations in weight-bearing and non-weight-bearing bones of euthyroid and hyperthyroid rats.

Yao M; Philip C. Dooley; Johannes A. Schuijers; Brian L. Grills

Collaboration


Dive into the Philip C. Dooley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Finkelstein

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge