Philip C. Wong
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip C. Wong.
Nature Medicine | 2003
Libang Yang; Kristina Lindholm; Riqiang Yan; Martin Citron; Weiming Xia; Xiao Li Yang; Thomas G. Beach; Lucia I. Sue; Philip C. Wong; Donald L. Price; Rena Li; Yong Shen
Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease
Nature Neuroscience | 2006
Xiangyou Hu; Caitlin W. Hicks; Wanxia He; Philip C. Wong; Wendy B. Macklin; Bruce D. Trapp; Riqiang Yan
Bace1 is an endopeptidase that cleaves the amyloid precursor protein at the β-secretase site. Apart from this cleavage, the functional importance of Bace1 in other physiological events is unknown. We show here that Bace1 regulates the process of myelination and myelin sheath thickness in the central and peripheral nerves. In Bace1-null mice, the process of myelination was delayed and myelin thickness was markedly reduced, indicating that genetic deletion of Bace1 causes hypomyelination. Bace1-null mice also showed altered neurological behaviors such as elevated pain sensitivity and reduced grip strength. Further mechanistic studies showed an altered neuregulin-Akt signaling pathway in Bace1-null mice. Full-length neuregulin-1 was increased and its cleavage product was decreased in the CNS of Bace1-null mice. Furthermore, phosphorylated Akt was also reduced. Based upon these and previous studies, we postulate that neuronally enriched Bace1 cleaves neuregulin-1 and that processed neuregulin-1 regulates myelination by means of phosphorylation of Akt in myelin-forming cells.
The Journal of Neuroscience | 2005
Fiona M. Laird; Huaibin Cai; Alena V. Savonenko; Mohamed H. Farah; Kaiwen He; Tatyana Melnikova; Hongjin Wen; Hsueh Cheng Chiang; Guilian Xu; Vassilis E. Koliatsos; David R. Borchelt; Donald L. Price; Hey Kyoung Lee; Philip C. Wong
A transmembrane aspartyl protease termed β-site APP cleavage enzyme 1 (BACE1) that cleaves the amyloid-β precursor protein (APP), which is abundant in neurons, is required for the generation of amyloid-β (Aβ) peptides implicated in the pathogenesis of Alzheimers disease (AD). We now demonstrate that BACE1, enriched in neurons of the CNS, is a major determinant that predisposes the brain to Aβ amyloidogenesis. The physiologically high levels of BACE1 activity coupled with low levels of BACE2 and α-secretase anti-amyloidogenic activities in neurons is a major contributor to the accumulation of Aβ in the CNS, whereas other organs are spared. Significantly, deletion of BACE1 in APPswe;PS1ΔE9 mice prevents both Aβ deposition and age-associated cognitive abnormalities that occur in this model of Aβ amyloidosis. Moreover, Aβ deposits are sensitive to BACE1 dosage and can be efficiently cleared from the CNS when BACE1 is silenced. However, BACE1 null mice manifest alterations in hippocampal synaptic plasticity as well as in performance on tests of cognition and emotion. Importantly, memory deficits but not emotional alterations in BACE1–/– mice are prevented by coexpressing APPswe;PS1ΔE9 transgenes, indicating that other potential substrates of BACE1 may affect neural circuits related to emotion. Our results establish BACE1 and APP processing pathways as critical for cognitive, emotional, and synaptic functions, and future studies should be alert to potential mechanism-based side effects that may occur with BACE1 inhibitors designed to ameliorate Aβ amyloidosis in AD.
The Journal of Neuroscience | 2009
Robert Vassar; Dora M. Kovacs; Riqiang Yan; Philip C. Wong
The β-amyloid (Aβ) peptide is the major constituent of amyloid plaques in Alzheimers disease (AD) brain and is likely to play a central role in the pathogenesis of this devastating neurodegenerative disorder. The β-secretase, β-site amyloid precursor protein cleaving enzyme (BACE1; also called Asp2, memapsin 2), is the enzyme responsible for initiating Aβ generation. Thus, BACE is a prime drug target for the therapeutic inhibition of Aβ production in AD. Since its discovery 10 years ago, much has been learned about BACE. This review summarizes BACE properties, describes BACE translation dysregulation in AD, and discusses BACE physiological functions in sodium current, synaptic transmission, myelination, and schizophrenia. The therapeutic potential of BACE will also be considered. This is a summary of topics covered at a symposium held at the 39th annual meeting of the Society for Neuroscience and is not meant to be a comprehensive review of BACE.
Neurobiology of Disease | 2001
Mitsunori Watanabe; Margaret Dykes-Hoberg; Valeria C. Culotta; Donald L. Price; Philip C. Wong; Jeffrey D. Rothstein
The mechanisms leading to neurodegeneration in ALS (amyotrophic lateral sclerosis) are not well understood, but cytosolic protein aggregates appear to be common in sporadic and familial ALS as well as transgenic mouse models expressing mutant Cu/Zn superoxide dismutase (SOD1). In this study, we systematically evaluated the presence of these aggregates in three different mouse models (G93A, G85R, and G37R SOD1) and compared these aggregates to those seen in cases of sporadic and familial ALS. Inclusions and loss of motor neurons were observed in spinal cords of all of these three mutant transgenic lines. Since a copper-mediated toxicity hypothesis has been proposed to explain the cytotoxic gain-of-function of mutant SOD1, we sought to determine the involvement of the copper chaperone for SOD1 (CCS) in the formation of protein aggregates. Although all aggregates contained CCS, SOD1 was not uniformly found in the inclusions. Similarly, CCS-positive skein-like inclusions were rarely seen in ALS neurons. These studies do not provide strong evidence for a causal role of CCS in aggregate formation, but they do suggest that protein aggregation is a common event in all animal models of the disease. Selected proteins, such as the glutamate transporter GLT-1, were not typically observed within the inclusions. Most inclusions were positively stained with antibodies recognizing ubiquitin, proteasome, Hsc70 in transgenic lines, and some Hsc70-positive inclusions were detected in sporadic ALS cases. Overall, these observations suggest that inclusions might be sequestered into ubiquitin-proteasome pathway and some chaperone proteins such as Hsc70 may be involved in formation and/or degradation of these inclusions.
Nature | 2015
Brian D. Freibaum; Yubing Lu; Rodrigo Lopez-Gonzalez; Nam Chul Kim; Sandra Almeida; Kyung Ha Lee; Nisha M. Badders; Marc Valentine; Bruce L. Miller; Philip C. Wong; Leonard Petrucelli; Hong Joo Kim; Fen-Biao Gao; J. Paul Taylor
The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.
The Journal of Neuroscience | 2005
Orly Lazarov; Gerardo Morfini; Edward B. Lee; Mohamed H. Farah; Anita Szodorai; Scott DeBoer; Vassilis E. Koliatsos; Stefan Kins; Virginia M.-Y. Lee; Philip C. Wong; Donald L. Price; Scott T. Brady; Sangram S. Sisodia
The sequential enzymatic actions of β-APP cleaving enzyme 1 (BACE1), presenilins (PS), and other proteins of the γ-secretase complex liberate β-amyloid (Aβ) peptides from larger integral membrane proteins, termed β-amyloid precursor proteins (APPs). Relatively little is known about the normal function(s) of APP or the neuronal compartment(s) in which APP undergoes proteolytic processing. Recent studies have been interpreted as consistent with the idea that APP serves as a kinesin-1 cargo receptor and that PS and BACE1 are associated with the APP-resident membranous cargos that undergo rapid axonal transport. In this report, derived from a collaboration among several independent laboratories, we examined the potential associations of APP and kinesin-1 using glutathione S-transferase pull-down and coimmunoprecipitation assays. In addition, we assessed the trafficking of membrane proteins in the sciatic nerves of transgenic mice with heterozygous or homozygous deletions of APP. In contrast to previous reports, we were unable to find evidence for direct interactions between APP and kinesin-1. Furthermore, the transport of kinesin-1 and tyrosine kinase receptors, previously reported to require APP, was unchanged in axons of APP-deficient mice. Finally, we show that two components of the APP proteolytic machinery, i.e., PS1 and BACE1, are not cotransported with APP in the sciatic nerves of mice. These findings suggest that the hypothesis that APP serves as a kinesin-1 receptor and that the proteolytic processing machinery responsible for generating Aβ is transported in the same vesicular compartment in axons of peripheral nerves requires revision.
Nature Neuroscience | 2002
Philip C. Wong; Huaibin Cai; David R. Borchelt; Donald L. Price
Recent research has significantly advanced our understanding of the molecular mechanisms of neurodegenerative diseases, including Alzheimers disease (AD) and motor neuron disease. Here we emphasize the use of genetically engineered mouse models that are instrumental for understanding why AD is a neuronal disease, and for validating attractive therapeutic targets. In motor neuron diseases, Cu/Zn superoxide dismutase and survival motor neuron mouse models are useful in testing disease mechanisms and therapeutic strategies for amyotrophic lateral sclerosis (ALS) and spinal motor atrophy, respectively, but the mechanisms that account for selective motor neuron loss remain uncertain. We anticipate that, in the future, therapies based on understanding disease mechanisms will be identified and tested in mouse model systems.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Xiu Shan; Po Min Chiang; Donald L. Price; Philip C. Wong
TAR DNA-binding protein-43 (TDP-43), a DNA/RNA-binding protein involved in RNA transcription and splicing, has been associated with the pathophysiology of neurodegenerative diseases, including ALS. However, the function of TDP-43 in motor neurons remains undefined. Here we use both gain- and loss-of-function approaches to determine roles of TDP-43 in motor neurons. Mice expressing human TDP-43 in neurons exhibited growth retardation and premature death that are characterized by abnormal intranuclear inclusions composed of TDP-43 and fused in sarcoma/translocated in liposarcoma (FUS/TLS), and massive accumulation of mitochondria in TDP-43-negative cytoplasmic inclusions in motor neurons, lack of mitochondria in motor axon terminals, and immature neuromuscular junctions. Whereas an elevated level of TDP-43 disrupts the normal nuclear distribution of survival motor neuron (SMN)-associated Gemini of coiled bodies (GEMs) in motor neurons, its absence prevents the formation of GEMs in the nuclei of these cells. Moreover, transcriptome-wide deep sequencing analysis revealed that a decrease in abundance of neurofilament transcripts contributed to the reduction of caliber of motor axons in TDP-43 mice. In concert, our findings indicate that TDP-43 participates in pathways critical for motor neuron physiology, including those that regulate the normal distributions of SMN-associated GEMs in the nucleus and mitochondria in the cytoplasm.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Po Min Chiang; Jonathan Ling; Yun Ha Jeong; Donald L. Price; Susan Aja; Philip C. Wong
Tat activating regulatory DNA-binding protein (Tardbp or TDP-43), a highly conserved metazoan DNA/RNA binding protein thought to be involved in RNA transcription and splicing, has been linked to the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration and is essential for early embryonic development. However, neither the physiological role of TDP-43 in the adult nor its downstream targets are well defined. To address these questions, we developed conditional Tardbp-KO mice and embryonic stem (ES) cell models. Here, we show that postnatal deletion of Tardbp in mice caused dramatic loss of body fat followed by rapid death. Moreover, conditional Tardbp-KO ES cells failed to proliferate. Importantly, high-throughput DNA sequencing analysis on the transcriptome of ES cells lacking Tardbp revealed a set of downstream targets of TDP-43. We show that Tbc1d1, a gene known to mediate leanness and linked to obesity, is down-regulated in the absence of TDP-43. Collectively, our results establish that TDP-43 is critical for fat metabolism and ES cell survival.