Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip D. Bates is active.

Publication


Featured researches published by Philip D. Bates.


The Arabidopsis Book | 2010

Acyl-Lipid Metabolism

Younghua Li-Beisson; Basil S. Shorrosh; Fred Beisson; Mats X. Andersson; Vincent Arondel; Philip D. Bates; Sébastien Baud; David McK. Bird; Allan DeBono; Timothy P. Durrett; Rochus Franke; Ian Graham; Kenta Katayama; Amélie A. Kelly; Tony R. Larson; Jonathan E. Markham; Martine Miquel; Isabel Molina; Ikuo Nishida; Owen Rowland; Lacey Samuels; Katherine M. Schmid; Hajime Wada; Ruth Welti; Changcheng Xu; Rémi Zallot; John B. Ohlrogge

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.


Plant Physiology | 2009

Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos.

Philip D. Bates; Timothy P. Durrett; John B. Ohlrogge; Mike Pollard

The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.


Current Opinion in Plant Biology | 2013

Biochemical pathways in seed oil synthesis

Philip D. Bates; Sten Stymne; John B. Ohlrogge

Oil produced in plant seeds is utilized as a major source of calories for human nutrition, as feedstocks for non-food uses such as soaps and polymers, and can serve as a high-energy biofuel. The biochemical pathways leading to oil (triacylglycerol) synthesis in seeds involve multiple subcellular organelles, requiring extensive lipid trafficking. Phosphatidylcholine plays a central role in these pathways as a substrate for acyl modifications and likely as a carrier for the trafficking of acyl groups between organelles and membrane subdomains. Although much has been clarified regarding the enzymes and pathways responsible for acyl-group flux, there are still major gaps in our understanding. These include the identity of several key enzymes, how flux between alternative pathways is controlled and the specialized cell biology leading to biogenesis of oil bodies that store up to 80% of carbon in seeds.


Plant Journal | 2011

The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds.

Philip D. Bates; John Browse

Engineering of oilseed plants to accumulate unusual fatty acids (FAs) in seed triacylglycerol (TAG) requires not only the biosynthetic enzymes for unusual FAs but also efficient utilization of the unusual FAs by the host-plant TAG biosynthetic pathways. Competing pathways of diacylglycerol (DAG) and subsequent TAG synthesis ultimately affect TAG FA composition. The membrane lipid phosphatidylcholine (PC) is the substrate for many FA-modifying enzymes (desaturases, hydroxylases, etc.) and DAG can be derived from PC for TAG synthesis. The relative proportion of PC-derived DAG versus de novo synthesized DAG utilized for TAG synthesis, and the ability of each pathway to utilize unusual FA substrates, are unknown for most oilseed plants, including Arabidopsis thaliana. Through metabolic labeling experiments we demonstrate that the relative flux of de novo DAG into the PC-derived DAG pathway versus direct conversion to TAG is ∼14/1 in wild-type Arabidopsis. Expression of the Ricinus communis FA hydroxylase reduced the flux of de novo DAG into PC by ∼70%. Synthesis of TAG directly from de novo DAG did not increase, resulting in lower total synthesis of labeled lipids. Hydroxy-FA containing de novo DAG was rapidly synthesized, but it was not efficiently accumulated or converted to PC and TAG, and appeared to be in a futile cycle of synthesis and degradation. However, FA hydroxylation on PC and conversion to DAG allowed some hydroxy-FA to accumulate in sn-2 TAG. Therefore, the flux of DAG through PC represents a major bottleneck for the accumulation of unusual FAs in TAG of transgenic Arabidopsis seeds.


Frontiers in Plant Science | 2012

The Significance of Different Diacylgycerol Synthesis Pathways on Plant Oil Composition and Bioengineering

Philip D. Bates; John Browse

The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA) composition of triacylglycerol (TAG). Plants can use two main pathways to produce diacylglycerol (DAG), the immediate precursor molecule to TAG synthesis: (1) De novo DAG synthesis, and (2) conversion of the membrane lipid phosphatidylcholine (PC) to DAG. The FA esterified to PC are also the substrate for FA modification (e.g., desaturation, hydroxylation, etc.), such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions.


Plant Physiology | 2011

Castor Phospholipid:Diacylglycerol Acyltransferase Facilitates Efficient Metabolism of Hydroxy Fatty Acids in Transgenic Arabidopsis

Harrie van Erp; Philip D. Bates; Julie Jeannine Burgal; Jay M. Shockey; John Browse

Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expression of castor (Ricinus communis) fatty acid hydroxylase (RcFAH) in Arabidopsis (Arabidopsis thaliana) resulted in only 17% hydroxy fatty acids (HFAs) in the seed oil. In order to increase HFA levels, we investigated castor phospholipid:diacylglycerol acyltransferase (PDAT). We cloned cDNAs encoding three putative PDAT enzymes from a castor seed cDNA library and coexpressed them with RcFAH12. One isoform, RcPDAT1A, increased HFA levels to 27%. Analysis of HFA-triacylglycerol molecular species and regiochemistry, along with analysis of the HFA content of phosphatidylcholine, indicates that RcPDAT1A functions as a PDAT in vivo. Expression of RcFAH12 alone leads to a significant decrease in FA content of seeds. Coexpression of RcPDAT1A and RcDGAT2 (for diacylglycerol acyltransferase 2) with RcFAH12 restored FA levels to nearly wild-type levels, and this was accompanied by a major increase in the mass of HFAs accumulating in the seeds. We show the usefulness of RcPDAT1A for engineering plants with high levels of HFAs and alleviating bottlenecks due to the production of unusual FAs in transgenic oilseeds.


Plant Physiology | 2012

Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols.

Philip D. Bates; Abdelhak Fatihi; Anna R. Snapp; Anders S. Carlsson; John Browse; Chaofu Lu

Triacylglycerols (TAG) in seeds of Arabidopsis (Arabidopsis thaliana) and many plant species contain large amounts of polyunsaturated fatty acids (PUFA). These PUFA are synthesized on the membrane lipid phosphatidylcholine (PC). However, the exact mechanisms of how fatty acids enter PC and how they are removed from PC after being modified to participate in the TAG assembly are unclear, nor are the identities of the key enzymes/genes that control these fluxes known. By reverse genetics and metabolic labeling experiments, we demonstrate that two genes encoding the lysophosphatidylcholine acyltransferases LPCAT1 and LPCAT2 in Arabidopsis control the previously identified “acyl-editing” process, the main entry of fatty acids into PC. The lpcat1/lpcat2 mutant showed increased contents of very-long-chain fatty acids and decreased PUFA in TAG and the accumulation of small amounts of lysophosphatidylcholine in developing seeds revealed by [14C]acetate-labeling experiments. We also showed that mutations in LPCATs and the PC diacylglycerol cholinephosphotransferase in the reduced oleate desaturation1 (rod1)/lpcat1/lpcat2 mutant resulted in a drastic reduction of PUFA content in seed TAG, accumulating only one-third of the wild-type level. These results indicate that PC acyl editing and phosphocholine headgroup exchange between PC and diacylglycerols control the majority of acyl fluxes through PC to provide PUFA for TAG synthesis.


PLOS ONE | 2013

WRINKLED1, A Ubiquitous Regulator in Oil Accumulating Tissues from Arabidopsis Embryos to Oil Palm Mesocarp

Wei Ma; Que Kong; Vincent Arondel; Aruna Kilaru; Philip D. Bates; Nicholas Thrower; Christoph Benning; John B. Ohlrogge

WRINKLED1 (AtWRI1) is a key transcription factor in the regulation of plant oil synthesis in seed and non-seed tissues. The structural features of WRI1 important for its function are not well understood. Comparison of WRI1 orthologs across many diverse plant species revealed a conserved 9 bp exon encoding the amino acids “VYL”. Site-directed mutagenesis of amino acids within the ‘VYL’ exon of AtWRI1 failed to restore the full oil content of wri1-1 seeds, providing direct evidence for an essential role of this small exon in AtWRI1 function. Arabidopsis WRI1 is predicted to have three alternative splice forms. To understand expression of these splice forms we performed RNASeq of Arabidopsis developing seeds and queried other EST and RNASeq databases from several tissues and plant species. In all cases, only one splice form was detected and VYL was observed in transcripts of all WRI1 orthologs investigated. We also characterized a phylogenetically distant WRI1 ortholog (EgWRI1) as an example of a non-seed isoform that is highly expressed in the mesocarp tissue of oil palm. The C-terminal region of EgWRI1 is over 90 amino acids shorter than AtWRI1 and has surprisingly low sequence conservation. Nevertheless, the EgWRI1 protein can restore multiple phenotypes of the Arabidopsis wri1-1 loss-of-function mutant, including reduced seed oil, the “wrinkled” seed coat, reduced seed germination, and impaired seedling establishment. Taken together, this study provides an example of combining phylogenetic analysis with mutagenesis, deep-sequencing technology and computational analysis to examine key elements of the structure and function of the WRI1 plant transcription factor.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

Philip D. Bates; Sean R. Johnson; Xia Cao; Jia Li; Jeong-Won Nam; Jan G. Jaworski; John B. Ohlrogge; John Browse

Significance Many plants produce valuable fatty acids in seed oils that provide renewable alternatives to petrochemicals for production of lubricants, coatings, or polymers. However, most plants producing these unusual fatty acids are unsuitable as crops. Metabolic engineering of oilseed crops, or model species, to produce the high-value unusual fatty acids has produced only low yields of the desired products, and previous research has indicated fatty acid degradation as a potential major factor hindering oilseed engineering. By contrast, we here present evidence that inefficient utilization of unusual fatty acids within the endoplasmic reticulum can induce posttranslational inhibition of acetyl–CoA carboxylase activity in the plastid, thus inhibiting fatty acid synthesis and total oil accumulation. Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.


Plant Physiology | 2016

Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis

Jay M. Shockey; Anushobha Regmi; Kimberly Cotton; Neil Adhikari; John Browse; Philip D. Bates

Arabidopsis GPAT9 is a highly conserved, single-copy, and essential glycerol-3-phosphate acyltransferase involved in seed oil biosynthesis. The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis.

Collaboration


Dive into the Philip D. Bates's collaboration.

Top Co-Authors

Avatar

John Browse

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay M. Shockey

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Neil Adhikari

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Arondel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna R. Snapp

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Anushobha Regmi

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar

Aruna Kilaru

East Tennessee State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge