Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip E. James is active.

Publication


Featured researches published by Philip E. James.


Free Radical Biology and Medicine | 1999

Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite

Aaron Barchowsky; Linda R. Klei; Edward J. Dudek; Harold M. Swartz; Philip E. James

Elevated levels of arsenite, the trivalent form of arsenic, in drinking water correlates with increased vascular disease and vessel remodeling. Previous studies from this laboratory demonstrated that environmentally relevant concentrations of arsenite caused oxidant-dependent increases in nuclear transcription factor levels in cultured porcine vascular endothelial cells. The current studies characterized the reactive species generated in these cells exposed to levels of arsenite that initiate cell signaling. These exposures did not deplete 5-triphosphate, nor did they affect basal or bradykinin-stimulated intracellular free Ca2+ levels, indicating that they were not lethal. Electron paramagnetic resonance (EPR) spectroscopy, including spin trapping with carboxy-PTIO (cPTIO), demonstrated that 5 microM or less of arsenite did not increase *NO levels over a 30-min period relative to *NO release stimulated by bradykinin. However, these same levels of arsenite rapidly increased both oxygen consumption and superoxide formation, as measured by EPR oximetry and spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), respectively. Pretreatment of the cells with DPI, apocynin, or superoxide dismutase abolished arsenite-stimulated DMPO-OH adduct formation. Finally arsenite increased extracellular accumulation of H2O2, measured as oxidation of homovanillic acid, with the same time and dose dependence, as seen for superoxide formation. These data suggest that superoxide and H2O2 are the predominant reactive species produced by endothelial cells after arsenite exposures that stimulate cell signaling and activate transcription factors.


Circulation Research | 2004

Vasorelaxation by Red Blood Cells and Impairment in Diabetes Reduced Nitric Oxide and Oxygen Delivery by Glycated Hemoglobin

Philip E. James; Derek Lang; Timothy Tufnell-Barret; Alexandra B. Milsom; Michael P. Frenneaux

Abstract— Vascular dysfunction in diabetes is attributed to lack of bioavailable nitric oxide (NO) and is postulated as a primary cause of small vessel complications as a result of poor glycemic control. Although it has been proposed that NO is bound by red blood cells (RBCs) and can induce relaxation of blood vessels distal to its site of production in the normal circulation, the effect of RBC glycation on NO binding and relaxation of hypoxic vessels is unknown. We confirm RBC-induced vessel relaxation is inversely related to tissue oxygenation and is proportional to RBC S-nitrosohemoglobin (HbSNO) content (but not nitrosylhemoglobin content). We show more total NO bound inside highly glycated RBCs (0.0134 versus 0.0119 NO/Hb, respectively; P <0.05) although proportionally less HbSNO (0.0053 versus 0.0088 NO/Hb, respectively; P <0.05). We also show glycosylation impairs the vasodilator function of RBCs within a physiological range of tissue oxygenation. These findings may represent an important contribution to reduced NO bioavailability in the microvasculature in diabetes.


Circulation | 2004

Red Blood Cell Nitric Oxide as an Endocrine Vasoregulator: A Potential Role in Congestive Heart Failure

Borunendra N. Datta; Timothy Tufnell-Barrett; Robert A. Bleasdale; Christopher J. Jones; Ian Beeton; Vincent Paul; Michael P. Frenneaux; Philip E. James

Background—A respiratory cycle for nitric oxide (NO) would involve the formation of vasoactive metabolites between NO and hemoglobin during pulmonary oxygenation. We investigated the role of these metabolites in hypoxic tissue in vitro and in vivo in healthy subjects and patients with congestive heart failure (CHF). Methods and Results—We investigated the capacity for red blood cells (RBCs) to dilate preconstricted aortic rings under various O2 tensions. RBCs induced cyclic guanylyl monophosphate–dependent vasorelaxation during hypoxia (35±4% at 1% O2, 4.7±1.6% at 95% O2; P <0.05). RBC-induced relaxations during hypoxia correlated with S-nitrosohemoglobin (SNO-Hb) (R2=0.88) but not iron nitrosylhemoglobin (HbFeNO) content. Relaxation responses for RBCs were compared with S-nitrosoglutathione across a range of O2 tensions. The fold increases in relaxation evoked by RBCs were significantly greater at 1% and 2% O2 compared with relaxations induced at 95% (P <0.05), consistent with an allosteric mechanism of hypoxic vasodilation. We also measured transpulmonary gradients of NO metabolites in healthy control subjects and in patients with CHF. In CHF patients but not control subjects, levels of SNO-Hb increase from 0.00293±0.00089 to 0.00585±0.00137 mol NO/mol hemoglobin tetramer (P =0.005), whereas HbFeNO decreases from 0.00361±0.00109 to 0.00081±0.00040 mol NO/mol hemoglobin tetramer (P =0.03) as hemoglobin is oxygenated in the pulmonary circulation. These metabolite gradients correlated with the hemoglobin O2 saturation gradient (P <0.05) and inversely with cardiac index (P <0.05) for both CHF patients and control subjects. Conclusions—We confirm that RBC-bound NO mediates hypoxic vasodilation in vitro. Transpulmonary gradients of hemoglobin-bound NO are evident in CHF patients and are inversely dependent on cardiac index. Hemoglobin may transport and release NO bioactivity to areas of tissue hypoxia or during increased peripheral oxygen extraction via an allosteric mechanism.


Free Radical Research | 2007

Electron paramagnetic spectroscopic evidence of exercise-induced free radical accumulation in human skeletal muscle

Damian M. Bailey; Leslie Lawrenson; Jane McEneny; Ian S. Young; Philip E. James; Simon K. Jackson; Robert R. Henry; Odile Mathieu-Costello; Joe M. McCord; Russell S. Richardson

The present study determined if acute exercise increased free radical formation in human skeletal muscle. Vastus lateralis biopsies were obtained in a randomized balanced order from six males at rest and following single-leg knee extensor exercise performed for 2 min at 50% of maximal work rate (WRMAX) and 3 min at 100% WRMAX. EPR spectroscopy revealed an exercise-induced increase in mitochondrial ubisemiquinone [0.167 ± 0.055 vs. rest: 0.106 ± 0.047 arbitrary units (AU)/g total protein (TP), P < 0.05] and α-phenyl-tert-butylnitrone-adducts (112 ± 41 vs. rest: 29 ± 9 AU/mg tissue mass, P < 0.05). Intramuscular lipid hydroperoxides also increased (0.320 ± 0.263 vs. rest: 0.148 ± 0.071 nmol/mg TP, P < 0.05) despite an uptake of α-tocopherol, α-carotene and β-carotene. There were no relationships between mitochondrial volume density and any biomarkers of oxidative stress. These findings provide the first direct evidence for intramuscular free radical accumulation and lipid peroxidation following acute exercise in humans.


Free Radical Biology and Medicine | 1996

Endotoxin-induced changes in intrarenal pO2, measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging.

Philip E. James; Goran Bacic; Oleg Y. Grinberg; Fuminori Goda; Jeff F. Dunn; Simon K. Jackson; Harold M. Swartz

Electron Paramagnetic Resonance (EPR) oximetry was used to measure tissue oxygen tension (pO2-partial pressure of oxygen) simultaneously in the kidney cortex and outer medulla in vivo in mice. pO2 in the cortex region was higher compared to that in the outer medulla. An intravenous injection of endotoxin resulted in a sharp drop in pO2 in the cortex and an increase in the medulla region, resulting in a transient period of equal pO2 in both regions. In control kidneys, functional Magnetic Resonance (MR) images showed the cortex region to have high signal intensity (T2*-weighted images), indicating that this region was well supplied with oxygenated hemoglobin, whereas the outer medulla showed low signal intensity. After administration of endotoxin, we observed an immediate increase in signal intensity in the outer medulla region, reflecting an increased level of oxygenated blood in this region. Pretreatment of mice with NG-monomethyl-L-arginine prevented both the changes in tissue pO2 and distribution of oxygenated hemoglobin, suggesting that localized production of nitric oxide has a critical role to play in renal medullary hemodynamics. In combining in vivo EPR with MR images of kidneys, we demonstrate the usefulness of these techniques for monitoring renal pO2 and changes in the distribution of oxygen.


Diabetologia | 2002

Abnormal metabolic fate of nitric oxide in Type I diabetes mellitus.

Alexandra B. Milsom; Christopher J. Jones; Jonathan Goodfellow; Michael P. Frenneaux; J. R. Peters; Philip E. James

Abstractn Aims/hypothesis. Reduced bioavailability of endothelium-derived nitric oxide is implicated in diabetic macrovascular and microvascular disease. In patients with diabetes, we hypothesised that protein glycosylation can alter nitric oxide binding affinity of haemoglobin and plasma proteins, hence reducing nitric oxide availability and causing an alteration in nitric oxide metabolism.n Methods. Binding of nitric oxide to haemoglobin was studied across a range of glycosylation levels in vitro (HbA1c 5.9 to 9.8%). In clinical studies nitrate, nitrite, nitrosyl haemoglobin and plasma nitrosothiols were measured in venous blood from 23 patients with uncomplicated Type I (insulin-dependent) diabetes mellitus and 17 non-diabetic control subjects. Samples were analysed at baseline and after nitric oxide was added ex vivo.n Results. Nitric oxide-haemoglobin binding was increased at a HbA1c greater than 8.5% compared with 5.9% (p<0.01). Basal nitrosyl haemoglobin was higher in diabetic patients compared with the control subjects (0.59±0.12xa0µmol/l vs 0.24±0.12xa0µmol/l, p<0.05). Plasma nitrosothiols, and nitrite and nitrate (NOx) concentrations were similar in diabetic patients compared with the control subjects (7.64±0.79xa0µmol/l vs 5.93±0.75xa0µmol/l, 13.98±2.44xa0µmol/l vs 12.44±2.15xa0µmol/l, respectively). In blood from diabetic patients, added nitric oxide was metabolised preferentially to nitrosyl haemoglobin and plasma nitrosothiols, with a twofold increase in nitrosyl haemoglobin observed across all concentrations of nitric oxide (p<0.05). These preferential increases correlated positively with HbA1c.n Conclusion/interpretation. Nitrosyl haemoglobin is increased in patients with Type I diabetes. Preferential metabolism to nitrosyl haemoglobin and nitrosothiols occurs after increases in nitric oxide. Our results show an accentuated association between nitric oxide and glycosylated proteins, especially deoxygenated haem. An altered metabolic fate of nitric oxide could influence microvascular regulation and tissue perfusion.


Free Radical Biology and Medicine | 1995

The effects of endotoxin on oxygen consumption of various cell types in vitro: An EPR oximetry study

Philip E. James; Simon K. Jackson; Oleg Y. Grinberg; Harold M. Swartz

We have studied the effects of bacterial endotoxin on the oxygen consumption of a variety of target cells, and found that the rate of utilization of oxygen by treated cells was decreased in a time- and dose-dependent manner. Precise EPR measurement of oxygen concentrations enabled us to demonstrate that this effect was linked to mitochondrial dysfunction and was particular to each cell type. Such detailed knowledge on oxygen utilization by viable whole cells and the varied effects of endotoxin are as yet undocumented. Oxygen consumption was shown to decrease quite markedly in CHO cells and kidney cells from the cortex region. Cells from the kidney medulla region had lower baseline consumption and were stimulated to increased levels of oxygen consumption on addition of similar doses of endotoxin. Macrophages exhibited a dual response in that in addition to inhibiting mitochondrial oxygen consumption, endotoxin pretreatment primed these cells to exhibit an enhanced oxidative burst on stimulation with Zymosan. These results show that endotoxin has a direct effect on normal cellular oxygen consumption and is an important parameter that must be considered when following the early effects on cells and tissues during the septic syndrome.


Journal of Leukocyte Biology | 1998

SUPEROXIDE PRODUCTION BY PHAGOCYTOSING MACROPHAGES IN RELATION TO THE INTRACELLULAR DISTRIBUTION OF OXYGEN

Philip E. James; Oleg Y. Grinberg; Harold M. Swartz

We simultaneously measured the concentration of oxygen ([O2]) within the phagosomal and extracellular compartments of macrophages. By combining electron paramagnetic resonance (EPR) oximetry techniques with that of spin‐trapping, we found that a significant difference in oxygen concentration ([O2]) exists between these two compartments and we were able to monitor (1) how [O2] in the extracellular compartment and the rate of mitochondrial consumption affected this difference in [O2], and (2) to what extent this gradient of [O2] influenced production of reactive oxygen species by phagosomes. Under conditions where the [O2] in the inflowing gas was high (210 μM; air), the [O2] in the extracellular and phagosomal compartments was 180 and 141 μM, respectively. This was sufficient to maintain maximum superoxide production in these cells. When extracellular [O2] was reduced to 84 or 36 μM, the [O2] in phagosomes within the cells (31.7 and 7.7 μM, respectively) was too low to maintain superoxide production by the NADPH‐oxidase system within the phagosomes. The [O2] in the extracellular compartments of these samples, however, was always sufficient to maintain superoxide production by phagosomes at the cell surface. Our findings suggest that the distribution of oxygen surrounding and within macrophages can influence their ability to perform microbicidal and tumoricidal functions, even at an [O2] in the media that appears to be adequate. J. Leukoc. Biol. 64: 78–84; 1998.


Biochimica et Biophysica Acta | 2002

Antibacterial peptide PR-39 affects local nitric oxide and preserves tissue oxygenation in the liver during septic shock

Melanie Madhani; Aaron Barchowsky; Linda R. Klei; Chris R. Ross; Simon K. Jackson; Harold M. Swartz; Philip E. James

The effects of the antibacterial peptide PR-39 on nitric oxide (NO) and liver oxygenation (pO(2)) in a mouse model of endotoxaemia have been explored. In vivo electron paramagnetic resonance (EPR) spectroscopy was used to make direct measurements of liver NO and pO(2). Measurements of pO(2) were made at two different anatomical locations within hepatic tissue to assess effects on blood supply (hence oxygen supply) and lobule oxygenation; selectively from the liver sinusoids or an average pO(2) across the liver lobule. PR-39 induced elevated levels of liver NO at 6 h following injection of lipopolysaccharide (LPS) as a result of increased iNOS expression in liver, but had no effect on eNOS or circulatory NO metabolites. Sinusoidal oxygenation was preserved, and pO(2) across the hepatic tissue bed improved with PR-39 treatment. We propose that the beneficial effects of PR-39 on liver in this septic model were mediated by increased levels of local NO and preservation of oxygen supply to the liver sinusoids.


Faraday Discussions | 2004

In vivo EPR spectroscopy: biomedical and potential diagnostic applications

Simon K. Jackson; Matthew P. Thomas; Sam Smith; Melanie Madhani; Stephen C. Rogers; Philip E. James

EPR spectroscopic techniques have been developed for the measurement of oxygen and nitric oxide in vivo. Specifically, the methods for in vivo measurement of these molecules has been applied to the study of septic shock, utilising an experimental murine model developed in our laboratory. Oxygen was measured as pO2 by the particlulate probes Gloxy and LiPc, which were surgically implanted at specific sites in tissues, and the soluble probe Trityl, which was administered intravenously. Nitric oxide was measured as the NO-Fe-(DETC)2 complex after administration of Fe2+ and DETC. LPS was seen to significantly decrease liver oxygen measured across the lobule and at the sinusoids by the Gloxy probe; there was a corresponding increase in nitric oxide both in the liver and systemically. The nitric oxide most likely originated from increased iNOS enzyme in the liver as demonstrated by Western blotting and the localisation of nitric oxide to the liver was confirmed with EPR imaging. LPS also caused a decrease in cerebral blood and tissue oxygenation, the rate of which was found to be dependent on the blood oxygenation. The development and applications of these in vivo EPR techniques for biomedical research and diagnostics is discussed.

Collaboration


Dive into the Philip E. James's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda R. Klei

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge