Philip G. Woodman
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip G. Woodman.
Cell | 1997
Hisanori Horiuchi; Roger Lippé; Heidi M. McBride; Mariantonietta Rubino; Philip G. Woodman; Harald Stenmark; Vladimir Rybin; Matthias Wilm; Keith Ashman; Matthias Mann; Marino Zerial
The small GTPase Rab5 plays an essential role in endocytic traffic. Rab GDP dissociation inhibitor delivers Rab5 to the membrane, where a nucleotide exchange activity allows recruitment of an effector protein, Rabaptin-5. Here we uncovered a novel 60 kDa Rab5-binding protein, Rabex-5. Rabex-5 forms a tight physical complex with Rabaptin-5, and this complex is essential for endocytic membrane fusion. Sequencing of mammalian Rabex-5 by nanoelectrospray mass spectrometry and cloning revealed striking homology to Vps9p, a yeast protein implicated in endocytic traffic. Rabex-5 displays GDP/GTP exchange activity on Rab5 upon delivery of the GTPase to the membrane. This demonstrates that a soluble exchange factor coupled to a Rab effector translocates from cytosol to the membrane, where the complex stabilizes the GTPase in the active state.
Journal of Cell Biology | 2002
Naomi Bishop; Alistair Horman; Philip G. Woodman
There is increasing evidence that ubiquitination of receptors provides an important endosomal sorting signal. Here we report that mammalian class E vacuolar protein-sorting (vps) proteins recognize ubiquitin. Both tumor susceptibility gene 101 (TSG101)/human VPS (hVPS)28 and hepatocyte growth factor receptor substrate (Hrs) cytosolic complexes bind ubiquitin-agarose. TSG101 and hVPS28 are localized to endosomes that contain internalized EGF receptor and label strongly for ubiquitinated proteins. Microinjection of anti-hVPS28 specifically retards EGF degradation and leads to endosomal accumulation of ubiquitin–protein conjugates. Likewise, depletion of TSG101 impairs EGF trafficking and causes dramatic relocalization of ubiquitin to endocytic compartments. Similar defects are found in cells overexpressing Hrs, further emphasizing the links between class E protein function, receptor trafficking, and endosomal ubiquitination.
Human Molecular Genetics | 2012
Patricia Gómez-Suaga; Berta Luzón-Toro; Dev Churamani; Ling-ling Zhang; Duncan Bloor-Young; Sandip Patel; Philip G. Woodman; Grant C. Churchill; Sabine Hilfiker
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson’s disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultaneously, LRKR2 overexpression increases the levels of the autophagy receptor p62 in a protein synthesis-dependent manner, and decreases the number of acidic lysosomes. The LRRK2-mediated effects result in increased sensitivity of cells to stressors associated with abnormal protein degradation. These effects can be mimicked by the lysosomal Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and can be reverted by an NAADP receptor antagonist or expression of dominant-negative receptor constructs. Collectively, our data indicate a molecular mechanism for LRRK2 deregulation of autophagy and reveal previously unidentified therapeutic targets.
Journal of Cell Biology | 2002
Jon D. Lane; John M. Lucocq; James G. Pryde; Francis A. Barr; Philip G. Woodman; Victoria J. Allan; Martin Lowe
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity.
Journal of Biological Chemistry | 2001
Naomi Bishop; Philip G. Woodman
Class E vacuolar protein sorting (vps) proteins are required for appropriate sorting of receptors within the yeast endocytic pathway, and most probably function in the biogenesis of multivesicular bodies. We have identified the mammalian orthologue of Vps28p as a 221- amino acid cytosolic protein that interacts with TSG101/mammalian VPS23 to form part of a multiprotein complex. Co-immunoprecipitation and cross-linking experiments demonstrated that hVPS28 and TSG101 interact directly and that binding requires structural information within the conserved C-terminal portion of TSG101. TSG101 and hVPS28 are predominantly cytosolic. However, when endosomal vacuolization was induced by the expression of a dominant-negative mutant of another class E vps protein, human VPS4, a portion of both TSG101 and hVPS28 translocated to the surface of these vacuoles. We conclude that TSG101 and its interacting components are directly involved in endosomal sorting.
Journal of Cell Science | 2003
Philip G. Woodman
A topic that is keeping cell biologists across several fields occupied is how the AAA ATPase p97 can have so many apparently unrelated functions. A recent model that proposed sets of adaptors for p97 selected according to the type of p97 activity seemed to afford a simple solution. For example, one known adaptor, the Ufd1–Npl4 complex, has been implicated in ubiquitin-dependent proteolysis whereas another, p47, is an essential co-factor for membrane fusion. However, further investigation has revealed that the situation is more complicated. Both Ufd1–Npl4 and p47 adaptors bind ubiquitin, and so their activities may be more closely related than first thought. A role for ubiquitin in p97-dependent membrane fusion is a particularly surprising development with no obvious explanation. However, some clues may be found from looking at the role of ubiquitin and the AAA ATPase Vps4 during sorting on the endocytic pathway.
Nature Cell Biology | 2007
Owen J. Driskell; Aleksandr Mironov; Victoria J. Allan; Philip G. Woodman
The early endosome is organised into domains to ensure the separation of cargo. Activated mitogenic receptors, such as epidermal growth factor (EGF) receptor, are concentrated into vacuoles enriched for the small GTPase Rab5, which progressively exclude nutrient receptors, such as transferrin receptor, into neighbouring tubules. These vacuoles become enlarged, increase their content of intralumenal vesicles as EGF receptor is sorted from the limiting membrane, and eventually mature to late endosomes. Maturation is governed by the loss of Rab5 and is accompanied by the movement of endosomes along microtubules towards the cell centre. Here, we show that EGF relocates to the cell centre in a dynein-dependent fashion, concomitant with the sorting away of transferrin receptor, although it remains in Rab5-positive early endosomes. When dynein function is acutely disrupted, efficient recycling of transferrin from EGF-containing endosomes is retarded, loss of Rab5 is slowed and endosome enlargement is reduced.
Cell | 1997
Howard Riezman; Philip G. Woodman; Gerrit van Meer; Mark Marsh
Cells regulate their developmental and functional programs through their interaction with the external milieu, which requires communication across the plasma membrane. The plasma membrane is constantly being remodeled by endocytosis allowing cells to control how they respond to external stimuli. Endocytosis also allows continuous sampling of the external environment, which is important for the uptake of micronutrients and for the cellular and organismal response to infectious agents. The importance of this process in human health merits its careful study and characterization. For the last nine years, a biannual European conference on endocytosis has been held in various locations. The fifth of these meetings was held September 13–18, in San Feliu de Guixols, a beautiful venue on the Costa Brava in Spain. Besides having the opportunity to scuba dive, the participants followed an interesting and ambitious schedule of oral and poster presentations on the molecular mechanisms involved in endocytosis and how these mechanisms relate to health and disease.
Journal of Cell Science | 2005
Jon D. Lane; Victoria J. Allan; Philip G. Woodman
Plasma membrane blebbing is a defining characteristic of apoptosis, but its significance is not understood. Using live-cell imaging we have identified two phases of apoptotic blebbing. The early phase is restricted to adherent cells, and is prevented by the Rho-activated kinase inhibitor Y27632. The late phase is partially resistant to Y27632, and generates morphologically distinct membrane protrusions that are likely precursors to apoptotic bodies. Late blebbing is observed in all apoptotic cells tested. It occurs at a fixed period before phosphatidyl serine exposure, indicating that it is a universal and important feature of apoptosis. Late blebs contain a cortical layer of endoplasmic reticulum that often surrounds condensed chromatin, while other organelles are excluded. The appearance in some apoptotic cells of partially formed sheets of endoplasmic reticulum suggest that these cortical layers are newly formed by the remodelling of the endoplasmic reticulum of interphase cells. Formation of endoplasmic reticulum and chromatin-containing blebs requires both actin and microtubules, and is prevented by the caspase-6 inhibitor zVEID.fmk.
Current Opinion in Cell Biology | 2008
Philip G. Woodman; Clare E. Futter
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB.