Philip Hewitt
Merck Serono
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip Hewitt.
Journal of Proteomics | 2013
Anja Wilmes; Alice Limonciel; Lydia Aschauer; Konrad Moenks; Chris Bielow; Martin O. Leonard; Jérémy Hamon; Donatella Carpi; Silke Ruzek; Andreas Handler; Olga Schmal; Karin Herrgen; Patricia Bellwon; Christof Burek; Germaine L. Truisi; Philip Hewitt; Emma Di Consiglio; Emanuela Testai; Bas J. Blaauboer; Claude Guillou; Christian G. Huber; Arno Lukas; Walter Pfaller; Stefan O. Mueller; Frédéric Y. Bois; Wolfgang Dekant; Paul Jennings
High content omic techniques in combination with stable human in vitro cell culture systems have the potential to improve on current pre-clinical safety regimes by providing detailed mechanistic information of altered cellular processes. Here we investigated the added benefit of integrating transcriptomics, proteomics and metabolomics together with pharmacokinetics for drug testing regimes. Cultured human renal epithelial cells (RPTEC/TERT1) were exposed to the nephrotoxin Cyclosporine A (CsA) at therapeutic and supratherapeutic concentrations for 14days. CsA was quantified in supernatants and cellular lysates by LC-MS/MS for kinetic modeling. There was a rapid cellular uptake and accumulation of CsA, with a non-linear relationship between intracellular and applied concentrations. CsA at 15μM induced mitochondrial disturbances and activation of the Nrf2-oxidative-damage and the unfolded protein-response pathways. All three omic streams provided complementary information, especially pertaining to Nrf2 and ATF4 activation. No stress induction was detected with 5μM CsA; however, both concentrations resulted in a maximal secretion of cyclophilin B. The study demonstrates for the first time that CsA-induced stress is not directly linked to its primary pharmacology. In addition we demonstrate the power of integrated omics for the elucidation of signaling cascades brought about by compound induced cell stress.
Aaps Journal | 2011
Tobias Christian Fuchs; Philip Hewitt
The detection of acute kidney injury (AKI) and the monitoring of chronic kidney disease (CKD) is becoming more important in industrialized countries. Because of the direct relation of kidney damage to the increasing age of the population, as well as the connection to other diseases like diabetes mellitus and congestive heart failure, renal diseases/failure has increased in the last decades. In addition, drug-induced kidney injury, especially of patients in intensive care units, is very often a cause of AKI. The need for diagnostic tools to identify drug-induced nephrotoxicity has been emphasized by the ICH-regulated agencies. This has lead to multiple national and international projects focusing on the identification of novel biomarkers to enhance drug development. Several parameters related to AKI or CKD are known and have been used for several decades. Most of these markers deliver information only when renal damage is well established, as is the case for serum creatinine. The field of molecular toxicology has spawned new options of the detection of nephrotoxicity. These new developments lead to the identification of urinary protein biomarkers, including Kim-1, clusterin, osteopontin or RPA-1, and other transcriptional biomarkers which enable the earlier detection of AKI and deliver further information about the area of nephron damage or the underlying mechanism. These biomarkers were mainly identified and qualified in rat but also for humans, several biomarkers have been described and now have to be validated. This review will give an overview of traditional and novel tools for the detection of renal damage.
Toxicological Sciences | 2010
Dana Hoffmann; Melanie Adler; Vishal S. Vaidya; Eva Rached; Laoighse Mulrane; William M. Gallagher; John J. Callanan; Jean C. Gautier; Katja Matheis; Frank Staedtler; Frank Dieterle; Arnd Brandenburg; Alexandra Sposny; Philip Hewitt; Heidrun Ellinger-Ziegelbauer; Joseph V. Bonventre; Wolfgang Dekant; Angela Mally
The kidney is one of the main targets of drug toxicity, but early detection of renal damage is often difficult. As part of the InnoMed PredTox project, a collaborative effort aimed at assessing the value of combining omics technologies with conventional toxicology methods for improved preclinical safety assessment, we evaluated the performance of a panel of novel kidney biomarkers in preclinical toxicity studies. Rats were treated with a reference nephrotoxin or one of several proprietary compounds that were dropped from drug development in part due to renal toxicity. Animals were dosed at two dose levels for 1, 3, and 14 days. Putative kidney markers, including kidney injury molecule-1 (Kim-1), lipocalin-2 (Lcn2), clusterin, and tissue inhibitor of metalloproteinases-1, were analyzed in kidney and urine using quantitative real-time PCR, ELISA, and immunohistochemistry. Changes in gene/protein expression generally correlated well with renal histopathological alterations and were frequently detected at earlier time points or at lower doses than the traditional clinical parameters blood urea nitrogen and serum creatinine. Urinary Kim-1 and clusterin reflected changes in gene/protein expression and histopathological alterations in the target organ in the absence of functional changes. This confirms clusterin and Kim-1 as early and sensitive, noninvasive markers of renal injury. Although Lcn2 did not appear to be specific for kidney toxicity, its rapid response to inflammation and tissue damage in general may suggest its utility in routine toxicity testing.
Chemico-Biological Interactions | 2009
Gregor Tuschl; Jens Hrach; Yvonne Walter; Philip Hewitt; Stefan O. Mueller
Cultures of primary hepatocytes from various species, including human, are used in several applications during pre-clinical drug development. Their use is however limited by cell survival and conservation of liver-specific functions in vitro. The differentiation status of hepatocytes in culture strongly depends on medium formulation and the extracellular matrix environment. We incubated primary rat hepatocytes for 10 days on collagen monolayer and in collagen sandwich cultures with or without serum. Restoration of polygonal cell shape and formation of functional bile canaliculi-like structures was stable only in serum-free sandwich cultures. Variations in general cell viability, as judged by the cellular ATP content, LDH release or apoptosis, were less pronounced between alternative cultures. The intracellular glutathione content was preserved close to in vivo levels especially in serum-free sandwich cultures. Basal activities of cytochrome P450 enzymes (P450) varied strongly between cultures. There was a minor effect on CYP1A but CYP2B activity was only detectable in the serum-free sandwich culture after 3 days and beyond. CYP2C activity was slightly elevated in both sandwich cultures, whereas CYP3A showed increased levels in both serum-free cultures. Inducibility of these P450s was fully maintained over time in serum-free collagen sandwich only. Gene expression was largely constant over time in serum-free sandwich cultures that was closest to liver. This liver-like property was supported by protein profiling results. Taken together, the serum-free collagen sandwich culture of primary rat hepatocytes maintained liver-like features over 10 days and is therefore a suitable model for long-term toxicity and drug-drug interaction studies.
Molecular and Cellular Biology | 2013
Lydia Aschauer; Leonhard Gruber; Walter Pfaller; Alice Limonciel; Toby J. Athersuch; Rachel Cavill; Abdulhameed Khan; Gerhard Gstraunthaler; Johannes Grillari; Regina Grillari; Philip Hewitt; Martin O. Leonard; Anja Wilmes; Paul Jennings
ABSTRACT The formation, maintenance, and repair of epithelial barriers are of critical importance for whole-body homeostasis. However, the molecular events involved in epithelial tissue maturation are not fully established. To this end, we investigated the molecular processes involved in renal epithelial proximal-tubule monolayer maturation utilizing transcriptomic, metabolomic, and functional parameters. We uncovered profound dynamic alterations in transcriptional regulation, energy metabolism, and nutrient utilization over the maturation process. Proliferating cells exhibited high glycolytic rates and high transcript levels for fatty acid synthesis genes (FASN), whereas matured cells had low glycolytic rates, increased oxidative capacity, and preferentially expressed genes for beta oxidation. There were dynamic alterations in the expression and localization of several adherens (CDH1, -4, and -16) and tight junction (TJP3 and CLDN2 and -10) proteins. Genes involved in differentiated proximal-tubule function, cilium biogenesis (BBS1), and transport (ATP1A1 and ATP1B1) exhibited increased expression during epithelial maturation. Using TransAM transcription factor activity assays, we could demonstrate that p53 and FOXO1 were highly active in matured cells, whereas HIF1A and c-MYC were highly active in proliferating cells. The data presented here will be invaluable in the further delineation of the complex dynamic cellular processes involved in epithelial cell regulation.
Toxicologic Pathology | 2012
Tobias Christian Fuchs; Katharina Frick; Barbara Emde; Stephanie Czasch; Friedrich von Landenberg; Philip Hewitt
Novel urinary protein biomarkers for the detection of acute renal damage, recently accepted by the U.S. Food and Drug Administration, European Medicines Agency, and Pharmaceuticals and Medical Devices Agency (Japan), now have to be validated in practice. Limited data regarding the performance of these acute markers after subacute or subchronic treatment are publicly available. To increase the area of applicability of these markers, it is important to evaluate the ability to detect them after 28 days of treatment or even longer. Wistar rats were treated with three doses of cisplatin, vancomycin, or puromycin to induce renal damage. Twelve candidate proteins were measured by Luminex xMAP–based WideScreen assays, MesoScale Discovery–based MULTI-SPOT technology, or RENA-strip dipstick assay after 28 days. Treatment with all three model compounds resulted in a dose-dependent increase in urinary biomarkers, specific for the observed areas within the nephron, determined histopathologically. The most promising biomarkers in this study were NGAL, Kim-1, osteopontin, clusterin, RPA-1, and GSTYb1, detected by multiplexing technologies. The RENA-strip dipstick assay delivered good diagnostic results for vancomycin-treated but not for cisplatin- or puromycin-treated rats. Taken together, the data show that these new biomarkers are robust and measurable for longer term studies to predict different types of kidney toxicities.
Toxicological Sciences | 2015
Rowena Sison-Young; Dimitra Mitsa; Rosalind E. Jenkins; David Mottram; Eliane Alexandre; Lysiane Richert; Hélène Aerts; Richard J. Weaver; Robert P. Jones; Esther Johann; Philip Hewitt; Magnus Ingelman-Sundberg; Christopher E. Goldring; Neil R. Kitteringham; B. Kevin Park
In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate ‘hepatocyte-like’ cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug.
Toxicology Letters | 2010
Melanie Adler; Dana Hoffmann; Heidrun Ellinger-Ziegelbauer; Philip Hewitt; Katja Matheis; Laoighse Mulrane; William M. Gallagher; John J. Callanan; Laura Suter; Michael Fountoulakis; Wolfgang Dekant; Angela Mally
This study was designed to assess the value of a set of potential markers for improved detection of liver injury in preclinical toxicity studies. Male Wistar rats were treated with drug candidates (BAY16, EMD335823, BI-3) that previously failed during development, in part due to hepatotoxicity, at two dose levels for 1, 3 and 14 days. Concentrations of lipocalin-2/NGAL and clusterin, which are frequently overexpressed and released from damaged tissues, and thiostatin, recently identified within PredTox as being elevated in urine in response to liver injury, were determined in rat urine and serum by ELISA. This was supplemented by confirmatory qRT-PCR and immunohistochemical analyses in the target organ. Serum paraoxonase-1 activity (PON1), which has been suggested as a marker of hepatotoxicity, was determined using a fluorometric assay. Clusterin and PON1 were not consistently altered in response to liver injury. In contrast, thiostatin and NGAL were increased in serum and urine of treated animals in a time- and dose-dependent manner. These changes correlated well with mRNA expression in the target organ and generally reflected the onset and degree of drug-induced liver injury. Receiver-operating characteristics (ROC) analyses supported serum thiostatin, but not NGAL, as a better indicator of drug-induced hepatobiliary injury than conventional clinical chemistry parameters, i.e. ALP, ALT and AST. Although thiostatin, an acute phase protein expressed in a range of tissues, may not be specific for liver injury, our results indicate that thiostatin may serve as a sensitive, minimally-invasive diagnostic marker of inflammation and tissue damage in preclinical safety assessment.
Toxicology Letters | 2010
Kathleen Boehme; Yasmin Dietz; Philip Hewitt; Stefan O. Mueller
The current genotoxicity tests of the standard in vitro battery, especially those using mammalian cells, are limited by their low specificity and highlight the importance of new in vitro tools. This study aimed to evaluate the suitability of HepG2 cells for assaying mutagens and promutagens. We determined P53 activity as surrogate genotoxicity endpoint in HepG2 cells. Our results revealed a significant P53-induction by actinomycin D, methyl methanesulfonate and etoposide. Prior to the investigation of promutagens we characterized HepG2 cells by analyzing the expression of 45 genes involved in xenobiotic metabolism and measuring the activity of selected Cytochrome-P450 (CYP) enzymes. We determined a limited metabolic capacity prompting us to employ a co-treatment with rat liver S9 as metabolic activation system (MAS) for promutagens. While cyclophosphamide showed an elevation of activated P53 in the presence of S9, 7,12-dimethylbenz[a]anthracene and aflatoxin B(1) responded without the MAS. Inhibition of cellular CYP3A4 or CYP1A/1B suppressed the aflatoxin B(1)- and dimethylbenz[a]anthracene-mediated P53 response, respectively, indicating that HepG2 cells are capable of metabolizing these compounds in a CYP1A/B/3A4-dependent manner. In summary, our results indicate that P53 activation in HepG2 cells combined with a MAS can be used for the identification of new (pro)genotoxicants.
Toxicology in Vitro | 2015
Daniel Crean; Patricia Bellwon; Lydia Aschauer; Alice Limonciel; Konrad Moenks; Philip Hewitt; Tobias Schmidt; Karin Herrgen; Wolfgang Dekant; Arno Lukas; Frédéric Y. Bois; Anja Wilmes; Paul Jennings; Martin O. Leonard
There is a growing impetus to develop more accurate, predictive and relevant in vitro models of renal xenobiotic exposure. As part of the EU-FP7, Predict-IV project, a major aim was to develop models that recapitulate not only normal tissue physiology but also aspects of disease conditions that exist as predisposing risk factors for xenobiotic toxicity. Hypoxia, as a common micro-environmental alteration associated with pathophysiology in renal disease, was investigated for its effect on the toxicity profile of a panel of 14 nephrotoxins, using the human proximal tubular epithelial RPTECT/TERT1 cell line. Changes in ATP, glutathione and resazurin reduction, after 14 days of daily repeat exposure, revealed a number of compounds, including adefovir dipivoxil with enhanced toxicity in hypoxia. We observed intracellular accumulation of adefovir in hypoxia and suggest decreases in the efflux transport proteins MRP4, MRP5, NHERF1 and NHERF3 as a possible explanation. MRP5 and NHERF3 were also down-regulated upon treatment with the HIF-1 activator, dimethyloxalylglycine. Interestingly, adefovir dependent gene expression shifted from alterations in cell cycle gene expression to an inflammatory response in hypoxia. The ability to investigate aspects of disease states and their influence on renal toxin handling is a key advantage of in vitro systems developed here. They also allow for detailed investigations into mechanisms of compound toxicity of potential importance for compromised tissue exposure.