Philip J. Bilan
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip J. Bilan.
Molecular and Cellular Biology | 1999
Qinghua Wang; Romel Somwar; Philip J. Bilan; Zhi Liu; Jing Jin; James R. Woodgett; Amira Klip
ABSTRACT L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBα)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells. Insulin induced a marked translocation of GLUT4myc to the plasma membrane within 20 min. This was prevented by transient transfection of a dominant inhibitory construct of phosphatidylinositol (PI) 3-kinase (Δp85α). Transiently transfected cells were identified by cotransfection of green fluorescent protein. A constitutively active PKBα, created by fusion of a viral Gag protein at its N terminus (GagPKB), increased the cell surface density of GLUT4myc compared to that of neighboring nontransfected cells. A kinase-inactive, phosphorylation-deficient PKBα/Akt1 construct with the mutations K179A (substitution of alanine for the lysine at position 179), T308A, and S473A (AAA-PKB) behaved as a dominant-negative inhibitor of insulin-dependent activation of cotransfected wild-type hemagglutinin (HA)-tagged PKB. Furthermore, AAA-PKB markedly inhibited the insulin-induced phosphorylation of cotransfected BAD, demonstrating inhibition of the endogenous PKB/Akt. Under the same conditions, AAA-PKB almost entirely blocked the insulin-dependent increase in surface GLUT4myc. PKBα with alanine substitutions T308A and S473A (AA-PKB) or K179A (A-PKB) alone was a less potent inhibitor of insulin-dependent activation of wild-type HA-PKB or GLUT4myc translocation than was AAA-PKB. Cotransfection of AAA-PKB with a fourfold DNA excess of HA-PKB rescued insulin-stimulated GLUT4myc translocation. AAA-PKB did not prevent actin bundling (membrane ruffling), though this response was PI 3-kinase dependent. Therefore, it is unlikely that AAA-PKB acted by inhibiting PI 3-kinase signaling. These results outline an important role for PKBα/Akt1 in the stimulation of glucose transport by insulin in muscle cells in culture.
Nature Neuroscience | 2015
Josiane C.S. Mapplebeck; S. Rosen; Simon Beggs; Sarah Taves; Jessica K. Alexander; Loren J. Martin; Jean-Sebastien Austin; Susana G. Sotocinal; Di Chen; Mu Yang; Xiang Qun Shi; Hao Huang; Nicolas J. Pillon; Philip J. Bilan; Yu Shan Tu; Amira Klip; Ru-Rong Ji; Ji Zhang; Michael W. Salter; Jeffrey S. Mogil
A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
Diabetes | 2007
Farah S.L. Thong; Philip J. Bilan; Amira Klip
Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5′ AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the downstream effectors linking these pathways to GLUT4 traffic are unknown. Here we explore the hypothesis that AS160 is a molecular link among diverse signaling cascades converging on GLUT4 translocation. PDGF and insulin increased AS160 phosphorylation in CHO-IR cells. Stimuli that activate c/n PKC or AMPK also elevated AS160 phosphorylation. We therefore examined if these signaling pathways engage AS160 to regulate GLUT4 traffic in muscle cells. Nonphosphorylatable AS160 (4P-AS160) virtually abolished the net surface GLUT4myc gains elicited by insulin, PDGF, K+ depolarization, or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside but partly, yet significantly, inhibited the effects of 4-phorbol-12-myristate-13-acetate. However, the hypertonicity or 2,4-dinitrophenol–dependent gains in surface GLUT4myc were unaffected by 4P-AS160. RK-AS160 (GTPase-activating protein [GAP] inactive) or 4PRK-AS160 (GAP inactive, nonphosphorylatable) had no effect on surface GLUT4myc elicited by all stimuli. Collectively, these results indicate that activation of Akt, c/n PKC, or α2-AMPK intersect at AS160 to regulate GLUT4 traffic, as well as highlight the potential of AS160 as a therapy target to increase muscle glucose uptake.
Diabetes | 2011
Jonathan D. Schertzer; Akhilesh K. Tamrakar; Joao G. Magalhaes; Sandra Pereira; Philip J. Bilan; Morgan D. Fullerton; Zhi Liu; Gregory R. Steinberg; Adria Giacca; Dana J. Philpott; Amira Klip
OBJECTIVE Insulin resistance associates with chronic inflammation, and participatory elements of the immune system are emerging. We hypothesized that bacterial elements acting on distinct intracellular pattern recognition receptors of the innate immune system, such as bacterial peptidoglycan (PGN) acting on nucleotide oligomerization domain (NOD) proteins, contribute to insulin resistance. RESEARCH DESIGN AND METHODS Metabolic and inflammatory properties were assessed in wild-type (WT) and NOD1/2−/− double knockout mice fed a high-fat diet (HFD) for 16 weeks. Insulin resistance was measured by hyperinsulinemic euglycemic clamps in mice injected with mimetics of meso-diaminopimelic acid–containing PGN or the minimal bioactive PGN motif, which activate NOD1 and NOD2, respectively. Systemic and tissue-specific inflammation was assessed using enzyme-linked immunosorbent assays in NOD ligand–injected mice. Cytokine secretion, glucose uptake, and insulin signaling were assessed in adipocytes and primary hepatocytes exposed to NOD ligands in vitro. RESULTS NOD1/2−/− mice were protected from HFD-induced inflammation, lipid accumulation, and peripheral insulin intolerance. Conversely, direct activation of NOD1 protein caused insulin resistance. NOD1 ligands induced peripheral and hepatic insulin resistance within 6 h in WT, but not NOD1−/−, mice. NOD2 ligands only modestly reduced peripheral glucose disposal. NOD1 ligand elicited minor changes in circulating proinflammatory mediators, yet caused adipose tissue inflammation and insulin resistance of muscle AS160 and liver FOXO1. Ex vivo, NOD1 ligand caused proinflammatory cytokine secretion and impaired insulin-stimulated glucose uptake directly in adipocytes. NOD1 ligand also caused inflammation and insulin resistance directly in primary hepatocytes from WT, but not NOD1−/−, mice. CONCLUSIONS We identify NOD proteins as innate immune components that are involved in diet-induced inflammation and insulin intolerance. Acute activation of NOD proteins by mimetics of bacterial PGNs causes whole-body insulin resistance, bolstering the concept that innate immune responses to distinctive bacterial cues directly lead to insulin resistance. Hence, NOD1 is a plausible, new link between innate immunity and metabolism.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Yi Sun; Philip J. Bilan; Zhi Liu; Amira Klip
Skeletal muscle is the primary site of dietary glucose disposal, a function that depends on insulin-mediated exocytosis of GLUT4 vesicles to its cell surface. In skeletal muscle and adipocytes, this response involves Akt signaling to the Rab-GAP (GTPase-activating protein) AS160/TBC1D4. Intriguingly, the AS160-targeted Rabs appear to differ, with Rab8A participating in GLUT4 exocytosis in muscle cells and Rab10 in adipocytes, and their activation by insulin is unknown. Rabs 8A, 10, and 13 belong to the same subfamily of Rab-GTPases. Here we show that insulin promotes GTP loading of Rab13 and Rab8A but not Rab10 in rat L6 muscle cells, Rab8A activation preceding that of Rab13. siRNA-mediated Rab13 knockdown blocked the insulin-induced increase of GLUT4 at the muscle cell surface that was rescued by a Rab13 ortholog but not by Rab8A. Constitutively active AS160 lowered basal and insulin-stimulated levels of surface GLUT4, effects that were reversed by overexpressing Rab8A or Rab13, suggesting that both Rabs are targets of AS160-GAP activity in the context of GLUT4 traffic. Rab13 had a broader intracellular distribution compared with the perinuclear restriction of Rab8A, and insulin promoted Rab13 colocalization with GLUT4 at the cell periphery. We conclude that Rab13 and Rab8A are Rab-GTPases activated by insulin, and that downstream of AS160 they regulate traffic of GLUT4 vesicles, possibly acting at distinct steps and sites. These findings close in on the series of events regulating muscle GLUT4 traffic in response to insulin, crucial for whole-body glucose homeostasis.
American Journal of Physiology-endocrinology and Metabolism | 2013
Nicolas J. Pillon; Philip J. Bilan; Lisbeth Nielsen Fink; Amira Klip
Skeletal muscles contain resident immune cell populations and their abundance and type is altered in inflammatory myopathies, endotoxemia or different types of muscle injury/insult. Within tissues, monocytes differentiate into macrophages and polarize to acquire pro- or anti-inflammatory phenotypes. Skeletal muscle macrophages play a fundamental role in repair and pathogen clearance. These events require a precisely regulated cross-talk between myofibers and immune cells, involving paracrine/autocrine and contact interactions. Skeletal muscle also undergoes continuous repair as a result of contractile activity that involves participation of myokines and anti-inflammatory input. Finally, skeletal muscle is the major site of dietary glucose disposal; therefore, muscle insulin resistance is essential to the development of whole body insulin resistance. Notably, muscle inflammation is emerging as a potential contributor to insulin resistance. Recent reports show that inflammatory macrophage numbers within muscle are elevated during obesity and that muscle cells in vitro can mount autonomous inflammatory responses under metabolic challenge. Here, we review the nature of skeletal muscle inflammation associated with muscle exercise, damage, and regeneration, endotoxin presence, and myopathies, as well as the new evidence of local inflammation arising with obesity that potentially contributes to insulin resistance.
Molecular Cancer Therapeutics | 2008
Tabitha E. Wood; Shadi Dalili; Craig D. Simpson; Rose Hurren; Xinliang Mao; Fernando Suarez Saiz; Marcela Gronda; Yanina Eberhard; Mark D. Minden; Philip J. Bilan; Amira Klip; Robert A. Batey; Aaron D. Schimmer
Evasion of death receptor ligand-induced apoptosis is an important contributor to cancer development and progression. Therefore, molecules that restore sensitivity to death receptor stimuli would be important tools to better understand this biological pathway and potential leads for therapeutic adjuncts. Previously, the small-molecule N-[4-chloro-3-(trifluoromethyl)phenyl]-3-oxobutanamide (fasentin) was identified as a chemical sensitizer to the death receptor stimuli FAS and tumor necrosis factor apoptosis-inducing ligand, but its mechanism of action was unknown. Here, we determined that fasentin alters expression of genes associated with nutrient and glucose deprivation. Consistent with this finding, culturing cells in low-glucose medium recapitulated the effects of fasentin and sensitized cells to FAS. Moreover, we showed that fasentin inhibited glucose uptake. Using virtual docking studies with a homology model of the glucose transport protein GLUT1, fasentin interacted with a unique site in the intracellular channel of this protein. Additional chemical studies with other GLUT inhibitors and analogues of fasentin supported a role for partial inhibition of glucose transport as a mechanism to sensitize cells to death receptor stimuli. Thus, fasentin is a novel inhibitor of glucose transport that blocks glucose uptake and highlights a new mechanism to sensitize cells to death ligands. [Mol Cancer Ther 2008;7(11):3546–55]
Journal of Biological Chemistry | 2003
Wenyan Niu; Carol Huang; Zafar Nawaz; Michelle Levy; Romel Somwar; Dailin Li; Philip J. Bilan; Amira Klip
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.
Microscopy Research and Technique | 1999
Theodoros Tsakiridis; Peter Tong; Benjamin D. Matthews; Evangelia Tsiani; Philip J. Bilan; Amira Klip; Gregory P. Downey
Insulin has diverse effects on cells, including stimulation of glucose transport, gene expression, and alterations of cell morphology. The hormone mediates these effects by activation of signaling pathways which utilize, 1) adaptor molecules such as the insulin receptor substrates (IRS), the Src and collagen homologs (Shc), and the growth factor receptor binding protein 2 (Grb2); 2) lipid kinases such as phosphatidylinositol 3‐kinase (PI 3‐Kinase); 3) small G proteins; and 4) serine, threonine, and tyrosine kinases. The activation of such signaling molecules by insulin is now well established, but we do not yet fully understand the mechanisms integrating these seemingly diverse pathways. Here, we discuss the involvement of the actin cytoskeleton in the propagation and regulation of insulin signals. In muscle cells in culture, insulin induces a rapid actin filament reorganization that coincides with plasma membrane ruffling and intense accumulation of pinocytotic vesicles. Initiation of these effects of insulin requires an intact actin cytoskeleton and activation of PI 3‐kinase. We observed recruitment PI 3‐kinase subunits and glucose transporter proteins to regions of reorganized actin. In both muscle and adipose cells, actin disassembly inhibited early insulin‐induced events such as recruitment of glucose transporters to the cell surface and enhanced glucose transport. Additionally, actin disassembly inhibited more prolonged effects of insulin, including DNA synthesis and expression of immediate early genes such as c‐fos. Intact actin filaments appear to be essential for mediation of early events such as association of Shc with Grb2 in response to insulin, which leads to stimulation of gene expression. Preliminary observations support a role for focal adhesion signaling complexes in insulin action. These observations suggest that the actin cytoskeleton facilitates propagation of the morphological, metabolic, and nuclear effects of insulin by regulating proper subcellular distribution of signaling molecules that participate in the insulin signaling pathway. Microsc. Res. Tech. 47:79–92, 1999.
Endocrinology | 2010
Akhilesh K. Tamrakar; Jonathan D. Schertzer; Tim T. Chiu; Kevin P. Foley; Philip J. Bilan; Dana J. Philpott; Amira Klip
Insulin resistance is associated with chronic low-grade inflammation in vivo, largely mediated by activated innate immune cells. Cytokines and pathogen-derived ligands of surface toll-like receptors can directly cause insulin resistance in muscle cells. However, it is not known if intracellular pathogen sensors can, on their own, provoke insulin resistance. Here, we show that the cytosolic pattern recognition receptors nucleotide-binding oligomerization domain-containing protein (NOD)1 and NOD2 are expressed in immune and metabolic tissues and hypothesize that their activation in muscle cells would result in cell-autonomous responses leading to insulin resistance. Bacterial peptidoglycan motifs that selectively activate NOD2 were directly administered to L6- GLUT4myc myotubes in culture. Within 3 h, insulin resistance arose, characterized by reductions in each insulin-stimulated glucose uptake, GLUT4 translocation, Akt Ser(473) phosphorylation, and insulin receptor substrate 1 tyrosine phosphorylation. Muscle cell-autonomous responses to NOD2 ligand included activation of the stress/inflammation markers c-Jun N-terminal kinase, ERK1/2, p38 MAPK, degradation of inhibitor of κBα, and production of proinflammatory cytokines. These results show that NOD2 alone is capable of acutely inducing insulin resistance within muscle cells, possibly by activating endogenous inflammatory signals and/or through cytokine production, curbing upstream insulin signals. NOD2 is hence a new inflammation target connected to insulin resistance, and this link occurs without the need of additional contributing cell types. This study provides supporting evidence for the integration of innate immune and metabolic responses through the involvement of NOD proteins and suggests the possible participation of cell autonomous immune responses in the development of insulin resistance in skeletal muscle, the major depot for postprandial glucose utilization.