Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip J. Law is active.

Publication


Featured researches published by Philip J. Law.


Nature Genetics | 2017

Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor

Kevin Litchfield; Max Levy; Giulia Orlando; Chey Loveday; Philip J. Law; Gabriele Migliorini; Amy Holroyd; Peter Broderick; Robert Karlsson; Trine B. Haugen; Wenche Kristiansen; Jérémie Nsengimana; Kerry Fenwick; Ioannis Assiotis; Zsofia Kote-Jarai; Alison M. Dunning; Kenneth Muir; Julian Peto; Rosalind Eeles; Douglas F. Easton; Darshna Dudakia; Nick Orr; Nora Pashayan; D. Timothy Bishop; Alison Reid; Robert Huddart; Janet Shipley; Tom Grotmol; Fredrik Wiklund; Richard S. Houlston

Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT–MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.


Blood | 2016

Germline mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia.

Helen E. Speedy; Ben Kinnersley; Daniel Chubb; Peter Broderick; Philip J. Law; Kevin Litchfield; Sandrine Jayne; Martin J. S. Dyer; Claire Dearden; George A. Follows; Daniel Catovsky; Richard S. Houlston

Chronic lymphocytic leukemia (CLL) can be familial; however, thus far no rare germ line disruptive alleles for CLL have been identified. We performed whole-exome sequencing of 66 CLL families, identifying 4 families where loss-of-function mutations in protection of telomeres 1 (POT1) co-segregated with CLL. The p.Tyr36Cys mutation is predicted to disrupt the interaction between POT1 and the telomeric overhang. The c.1164-1G>A splice-site, p.Gln358SerfsTer13 frameshift, and p.Gln376Arg missense mutations are likely to impact the interaction between POT1 and adrenocortical dysplasia homolog (ACD), which is a part of the telomere-capping shelterin complex. We also identified mutations in ACD (c.752-2A>C) and another shelterin component, telomeric repeat binding factor 2, interacting protein (p.Ala104Pro and p.Arg133Gln), in 3 CLL families. In a complementary analysis of 1083 cases and 5854 controls, the POT1 p.Gln376Arg variant, which has a global minor allele frequency of 0.0005, conferred a 3.61-fold increased risk of CLL (P = .009). This study further highlights telomere dysregulation as a key process in CLL development.


British Journal of Cancer | 2016

Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer

David Jarvis; Jonathan S. Mitchell; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Jaakko Kaprio; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Meklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay

Background:Observational studies have associated adiposity with an increased risk of colorectal cancer (CRC). However, such studies do not establish a causal relationship. To minimise bias from confounding we performed a Mendelian randomisation (MR) analysis to examine the relationship between adiposity and CRC.Methods:We used SNPs associated with adult body mass index (BMI), waist-hip ratio (WHR), childhood obesity and birth weight as instrumental variables in a MR analysis of 9254 CRC cases and 18u2009386 controls.Results:In the MR analysis, the odds ratios (ORs) of CRC risk per unit increase in BMI, WHR and childhood obesity were 1.23 (95% CI: 1.02–1.49, P=0.033), 1.59 (95% CI: 1.08–2.34, P=0.019) and 1.07 (95% CI: 1.03–1.13, P=0.018), respectively. There was no evidence for association between birth weight and CRC (OR=1.22, 95% CI: 0.89–1.67, P=0.22). Combining these data with a concurrent MR-based analysis for BMI and WHR with CRC risk (totalling to 18u2009190 cases, 27u2009617 controls) provided increased support, ORs for BMI and WHR were 1.26 (95% CI: 1.10–1.44, P=7.7 × 10−4) and 1.40 (95% CI: 1.14–1.72, P=1.2 × 10−3), respectively.Conclusions:These data provide further evidence for a strong causal relationship between adiposity and the risk of developing CRC highlighting the urgent need for prevention and treatment of adiposity.


Annals of Oncology | 2016

Implications of polygenic risk for personalised colorectal cancer screening

Matthew Frampton; Philip J. Law; Kevin Litchfield; Eva Morris; D. J. Kerr; Clare Turnbull; Ian Tomlinson; Richard S. Houlston

BACKGROUNDnWe modelled the utility of applying a personalised screening approach for colorectal cancer (CRC) when compared with standard age-based screening. In this personalised screening approach, eligibility is determined by absolute risk which is calculated from age and polygenic risk score (PRS), where the PRS is relative risk attributable to common genetic variation. In contrast, eligibility in age-based screening is determined only by age.nnnDESIGNnWe calculated absolute risks of CRC from UK population age structure, incidence and mortality rate data, and a PRS distribution which we derived for the 37 known CRC susceptibility variants. We compared the number of CRC cases potentially detectable by personalised and age-based screening. Using Genome-Wide Complex Trait Analysis to calculate the heritability attributable to common variation, we repeated the analysis assuming all common CRC risk variants were known.nnnRESULTSnBased on the known CRC variants, individuals with a PRS in the top 1% have a 2.9-fold increased CRC risk over the population median. Compared with age-based screening (aged 60: 10-year absolute risk 1.96% in men, 1.19% in women, as per the UK NHS National Bowel Screening Programme), personalised screening of individuals aged 55-69 at the same risk would lead to 16% fewer men and 17% fewer women being eligible for screening with 10% and 8%, respectively, fewer screen-detected cases. If all susceptibility variants were known, individuals with a PRS in the top 1% would have an estimated 7.7-fold increased risk. Personalised screening would then result in 26% fewer men and women being eligible for screening with 7% and 5% fewer screen-detected cases.nnnCONCLUSIONnPersonalised screening using PRS has the potential to optimise population screening for CRC and to define those likely to maximally benefit from chemoprevention. There are however significant technical and operational details to be addressed before any such programme is introduced.


European Journal of Cancer | 2017

Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis.

Sebastian May-Wilson; Amit Sud; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Susan M. Farrington; Maria Timofeeva; Brian F. Meyer; Salma M. Wakil

Background While dietary fat has been established as a risk factor for colorectal cancer (CRC), associations between fatty acids (FAs) and CRC have been inconsistent. Using Mendelian randomisation (MR), we sought to evaluate associations between polyunsaturated (PUFA), monounsaturated (MUFA) and saturated FAs (SFAs) and CRC risk. Methods We analysed genotype data on 9254 CRC cases and 18,386 controls of European ancestry. Externally weighted polygenic risk scores were generated and used to evaluate associations with CRC per one standard deviation increase in genetically defined plasma FA levels. Results Risk reduction was observed for oleic and palmitoleic MUFAs (OROA = 0.77, 95% CI: 0.65–0.92, P = 3.9 × 10−3; ORPOA = 0.36, 95% CI: 0.15–0.84, P = 0.018). PUFAs linoleic and arachidonic acid had negative and positive associations with CRC respectively (ORLA = 0.95, 95% CI: 0.93–0.98, P = 3.7 × 10−4; ORAA = 1.05, 95% CI: 1.02–1.07, P = 1.7 × 10−4). The SFA stearic acid was associated with increased CRC risk (ORSA = 1.17, 95% CI: 1.01–1.35, P = 0.041). Conclusion Results from our analysis are broadly consistent with a pro-inflammatory FA profile having a detrimental effect in terms of CRC risk.


International Journal of Cancer | 2017

Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer.

Henry Rodriguez-Broadbent; Philip J. Law; Amit Sud; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Samuli Ripatti; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay; Susan M. Farrington; Maria Timofeeva

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low‐density lipoprotein (LDL), and high‐density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP‐CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increaseu2009=u20091.46, 95% confidence interval [CI]: 1.20–1.79, p = 1.68 × 10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92–1.18, p = 0.49), 0.94 (95% CI: 0.84–1.05, p = 0.27), and 0.98 (95% CI: 0.85–1.12, p = 0.75) respectively. A genetic risk score for 3‐hydoxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (ORu2009=u20090.69, 95% CI: 0.49–0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.


Cell Reports | 2016

Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism.

Radhika Kandaswamy; Georgina P. Sava; Helen E. Speedy; Sílvia Beà; José I. Martín-Subero; James B. Studd; Gabriele Migliorini; Philip J. Law; Xose S. Puente; David Martín-García; Itziar Salaverria; Jesús Gutiérrez-Abril; Carlos López-Otín; Daniel Catovsky; James M. Allan; Elias Campo; Richard S. Houlston

Summary Chronic lymphocytic leukemia (CLL) is an adult B cell malignancy. Genome-wide association studies show that variation at 15q15.1 influences CLL risk. We deciphered the causal variant at 15q15.1 and the mechanism by which it influences tumorigenesis. We imputed all possible genotypes across the locus and then mapped highly associated SNPs to areas of chromatin accessibility, evolutionary conservation, and transcription factor binding. SNP rs539846 C>A, the most highly associated variant (p = 1.42 × 10−13, odds ratio = 1.35), localizes to a super-enhancer defined by extensive histone H3 lysine 27 acetylation in intron 3 of B cell lymphoma 2 (BCL2)-modifying factor (BMF). The rs539846-A risk allele alters a conserved RELA-binding motif, disrupts RELA binding, and is associated with decreased BMF expression in CLL. These findings are consistent with rs539846 influencing CLL susceptibility through differential RELA binding, with direct modulation of BMF expression impacting on anti-apoptotic BCL2, a hallmark of oncogenic dependency in CLL.


Scientific Reports | 2017

Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci

Philip J. Law; Amit Sud; Jonathan S. Mitchell; Marc Henrion; Giulia Orlando; Oleg Lenive; Peter Broderick; Helen E. Speedy; David C. Johnson; Martin Kaiser; Niels Weinhold; Rosie Cooke; Nicola J. Sunter; Graham Jackson; Geoffrey Summerfield; Robert J. Harris; Andrew R. Pettitt; David Allsup; Jonathan Carmichael; James R Bailey; Guy Pratt; Thahira Rahman; Chris Pepper; Christopher Fegan; Elke Pogge von Strandmann; Andreas Engert; Asta Försti; Bowang Chen; Miguel Inacio da Silva Filho; Hauke Thomsen

B-cell malignancies (BCM) originate from the same cell of origin, but at different maturation stages and have distinct clinical phenotypes. Although genetic risk variants for individual BCMs have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. We explored genome-wide association studies of chronic lymphocytic leukaemia (CLL, Nu2009=u20091,842), Hodgkin lymphoma (HL, Nu2009=u20091,465) and multiple myeloma (MM, Nu2009=u20093,790). We identified a novel pleiotropic risk locus at 3q22.2 (NCK1, rs11715604, Pu2009=u20091.60u2009×u200910−9) with opposing effects between CLL (Pu2009=u20091.97u2009×u200910−8) and HL (Pu2009=u20093.31u2009×u200910−3). Eight established non-HLA risk loci showed pleiotropic associations. Within the HLA region, Ser37u2009+u2009Phe37 in HLA-DRB1 (Pu2009=u20091.84u2009×u200910−12) was associated with increased CLL and HL risk (Pu2009=u20094.68u2009×u200910−12), and reduced MM risk (Pu2009=u20091.12u2009×u200910−2), and Gly70 in HLA-DQB1 (Pu2009=u20093.15u2009×u200910−10) showed opposing effects between CLL (Pu2009=u20093.52u2009×u200910−3) and HL (Pu2009=u20093.41u2009×u200910−9). By integrating eQTL, Hi-C and ChIP-seq data, we show that the pleiotropic risk loci are enriched for B-cell regulatory elements, as well as an over-representation of binding of key B-cell transcription factors. These data identify shared biological pathways influencing the development of CLL, HL and MM. The identification of these risk loci furthers our understanding of the aetiological basis of BCMs.


Nature Communications | 2017

Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

Philip J. Law; Sonja I. Berndt; Helen E. Speedy; Nicola J. Camp; Georgina P. Sava; Christine F. Skibola; Amy Holroyd; Vijai Joseph; Nicola J. Sunter; Alexandra Nieters; Sílvia Beà; Alain Monnereau; David Martín-García; Lynn R. Goldin; Guillem Clot; Lauren R. Teras; Inés Quintela; Brenda M. Birmann; Sandrine Jayne; Wendy Cozen; Aneela Majid; Karin E. Smedby; Qing Lan; Claire Dearden; Angela Brooks-Wilson; Andrew G. Hall; Mark P. Purdue; Tryfonia Mainou-Fowler; Claire M. Vajdic; Graham Jackson

Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.


WOS | 2017

Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer

Henry Rodriguez-Broadbent; Philip J. Law; Amit Sud; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti-Pekka Sarin; Samuli Ripatti; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka-Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay; Susan M. Farrington; Maria Timofeeva

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low‐density lipoprotein (LDL), and high‐density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP‐CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increaseu2009=u20091.46, 95% confidence interval [CI]: 1.20–1.79, p = 1.68 × 10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92–1.18, p = 0.49), 0.94 (95% CI: 0.84–1.05, p = 0.27), and 0.98 (95% CI: 0.85–1.12, p = 0.75) respectively. A genetic risk score for 3‐hydoxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (ORu2009=u20090.69, 95% CI: 0.49–0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.

Collaboration


Dive into the Philip J. Law's collaboration.

Top Co-Authors

Avatar

Amit Sud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Richard S. Houlston

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Giulia Orlando

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Peter Broderick

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Holroyd

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ben Kinnersley

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kevin Litchfield

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Karl-Heinz Jöckel

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge