Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip J. Moos is active.

Publication


Featured researches published by Philip J. Moos.


Chemical Research in Toxicology | 2010

ZNO PARTICULATE MATTER REQUIRES CELL CONTACT FOR TOXICITY IN HUMAN COLON CANCER CELLS

Philip J. Moos; Kevin Chung; David W. Woessner; Matthew Honeggar; N. Shane Cutler; John M. Veranth

There is ongoing concern regarding the toxicity of nanoparticles with sizes less than 100 nm as compared to larger particles of the same nominal substance. Two commercial ZnO types, one sold as a 8-10 nm powder and the other described as -325 mesh (<44 mum) powder, were evaluated in human colon-derived RKO cells. The powders had a volume-to-surface area ratio equivalent to 40 and 330 nm spheres, respectively. Both materials formed micrometer-sized agglomerates in cell culture media. The nanosized ZnO was more cytotoxic than the micrometer-sized ZnO with LC(50) values of 15 +/- 1 and 29 +/- 4 mug/cm(2), respectively. Transfer of Zn from the solid phase to the cell culture media in the presence of RKO cells was time- and concentration-dependent. However, direct particle-cell contact was required for RKO cell cytotoxicity, and the toxicity of particles was independent of the amount of soluble Zn in the cell culture media. The mechanism of cell death includes the disruption of mitochondrial function. Robust markers of apoptosis, Annexin V staining, loss of mitochondrial potential, and increased generation of superoxide were observed when cells were treated with ZnO particulate matter but not when treated with comparable concentration of a soluble Zn salt. Both ZnO samples induced similar mechanisms of toxicity, but there was a statistically significant increase in potency per unit mass with the smaller particles.


Journal of Pharmacology and Experimental Therapeutics | 2007

Transient Receptor Potential Vanilloid 1 Agonists Cause Endoplasmic Reticulum Stress and Cell Death in Human Lung Cells

Karen C. Thomas; Ashwini S. Sabnis; Mark E. Johansen; Diane L. Lanza; Philip J. Moos; Garold S. Yost; Christopher A. Reilly

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-selective ion channel expressed in human lung cells. We show that activation of the intracellular subpopulation of TRPV1 causes endoplasmic reticulum (ER) stress and cell death in human bronchial epithelial and alveolar cells. TRPV1 agonist (nonivamide) treatment caused calcium release from the ER and altered the transcription of growth arrest- and DNA damage-inducible transcript 3 (GADD153), GADD45α, GRP78/BiP, ATF3, CCND1, and CCNG2) in a manner comparable with prototypical ER stress-inducing agents. The TRPV1 antagonist N-(4-tert-butylbenzyl)-N′-(1-[3-fluoro-4-(methylsulfonylamino)-phenyl]ethyl)thiourea (LJO-328) inhibited mRNA responses and cytotoxicity. EGTA and ruthenium red inhibited cell surface TRPV1 activity, but they did not prevent ER stress gene responses or cytotoxicity. Cytotoxicity paralleled eukaryotic translation initiation factor 2, subunit 1 (EIF2α) phosphorylation and the induction of GADD153 mRNA and protein. Transient overexpression of GADD153 caused cell death independent of agonist treatment, and cells selected for stable overexpression of a GADD153 dominant-negative mutant exhibited reduced sensitivity. Salubrinal, an inhibitor of ER stress-induced cytotoxicity via the EIF2αK3/EIF2α pathway, or stable overexpression of the EIF2α-S52A dominant-negative mutant also inhibited cell death. Treatment of the TRPV1-null human embryonic kidney 293 cell line with TRPV1 agonists did not initiate ER stress responses. Likewise, n-benzylnonanamide, an inactive analog of nonivamide, failed to cause ER calcium release, an increase in GADD153 expression, and cytotoxicity. We conclude that activation of ER-bound TRPV1 and stimulation of GADD153 expression via the EIF2αK3/EIF2α pathway represents a common mechanism for cytotoxicity by cell-permeable TRPV1 agonists. These findings are significant within the context of lung inflammatory diseases where elevated concentrations of endogenous TRPV1 agonists are probably produced in sufficient quantities to cause TRPV1 activation and lung cell death.


Metallomics | 2011

Responses of human cells to ZnO nanoparticles: a gene transcription study

Philip J. Moos; Kyle Olszewski; Matthew Honeggar; Pamela B. Cassidy; Sancy A. Leachman; David W. Woessner; N. Shane Cutler; John M. Veranth

The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells.


Radiation Research | 2009

Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation

Raymond L. Warters; Ann T. Packard; Gwen F. Kramer; David K. Gaffney; Philip J. Moos

Abstract Warters, R. L., Packard, A. T., Kramer, G. F., Gaffney, D. K. and Moos, P. J. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation. Radiat. Res. 172, 82-95 (2009). Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation.


Biochemical Pharmacology | 2011

Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

Robyn L. Poerschke; Philip J. Moos

Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction.


Journal of Biological Chemistry | 2004

Conditional Expression of 15-Lipoxygenase-1 Inhibits the Selenoenzyme Thioredoxin Reductase MODULATION OF SELENOPROTEINS BY LIPOXYGENASE ENZYMES

Margaret K. Yu; Philip J. Moos; Pamela B. Cassidy; Mark L. Wade; Frank A. Fitzpatrick

The selenoenzyme thioredoxin reductase regulates redox-sensitive proteins involved in inflammation and carcinogenesis, including ribonucleotide reductase, p53, NFκB, and others. Little is known about endogenous cellular factors that modulate thioredoxin reductase activity. Here we report that several metabolites of 15-lipoxygenase-1 inhibit purified thioredoxin reductase in vitro. 15(S)-Hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic acid, a metastable hydroperoxide generated by 15-lipoxygenase-1, and 4-hydroxy-2-nonenal, its non-enzymatic rearrangement product inhibit thioredoxin reductase with IC50 = 13 ± 1.5 μm and 1 ± 0.2 μm, respectively. Endogenously generated metabolites of 15-lipoxygenase-1 also inhibit thioredoxin reductase in HEK-293 cells that harbor a 15-LOX-1 gene under the control of an inducible promoter complex. Conditional, highly selective induction of 15-lipoxygenase-1 caused an inhibition of ribonucleotide reductase activity, cell cycle arrest in G1, impairment of anchorage-independent growth, and accumulation of the pro-apoptotic protein BAX. All of these responses are consistent with inhibition of thioredoxin reductase via 15-lipoxygenase-1 overexpression. In contrast, metabolites of 5-lipoxygenase were poor inhibitors of isolated thioredoxin reductase, and the overexpression of 5-lipoxygenase did not inhibit thioredoxin reductase or cause a G cell cycle arrest. The influences of 15-lipoxygenase-1 on 1inflammation, cell growth, and survival may be attributable, in part, to inhibition of thioredoxin reductase and several redox-sensitive processes subordinate to thioredoxin reductase.


Leukemia | 2002

Diversity of the apoptotic response to chemotherapy in childhood leukemia

T Liu; Elizabeth A. Raetz; Philip J. Moos; Sl Perkins; Cs Bruggers; F Smith; William L. Carroll

Apoptosis is the primary mechanism through which most chemotherapeutic agents induce tumor cell death. The purpose of this study was to determine the extent to which blasts from children with leukemia undergo a uniform apoptotic death pathway in vivo. The expression of pro- and anti-apoptotic proteins p53, p21, MDM-2, BCL-2, BCL-XL, BCL-XS, and BAX, and caspase-3 activity was determined in circulating blasts collected from the peripheral blood of children with leukemia prior to, and at serial time points following chemotherapy. Culturing blasts ex vivo for 12 h assessed spontaneous apoptosis and the increment induced by chemotherapy. Baseline apoptosis varied between 3% and 29%. Twenty-four hours following chemotherapy the increase in the percentage of cells undergoing apoptosis ranged from <1% to 38%. Eleven of 20 patients who received initial treatment with a p53-dependent drug showed an increase in p53 expression. In these patients, the levels of p53 target genes were also increased. A uniform pattern of BCL-2 family protein expression was not observed and only a minority of samples showed a change that would favor apoptosis. We conclude that that the initial apoptotic response to chemotherapy in children with leukemia is variable involving both p53-dependent and p53-independent pathways.


Journal of Biological Chemistry | 2007

Oxidation of 2-Cys-peroxiredoxins by arachidonic acid peroxide metabolites of lipoxygenases and cyclooxygenase-2.

Pauline Cordray; Kelly Doyle; Kornelia Edes; Philip J. Moos; Frank A. Fitzpatrick

Human peroxiredoxins serve dual roles as anti-oxidants and regulators of H2O2-mediated cell signaling. The functional versatility of peroxiredoxins depends on progressive oxidation of key cysteine residues. The sulfinic or sulfonic forms of peroxiredoxin lose their peroxidase activity, which allows cells to accumulate H2O2 for signaling or pathogenesis in inflammation, cancer, and other disorders. We report that arachidonic acid lipid hydroperoxide metabolites of 5-, 12-, 15-lipoxygenase-1, and cyclooxygenase-2 oxidize the 2-Cys-peroxiredoxins 1, 2, and 3 to their sulfinic and sulfonic forms. When added exogenously to cells, 5-, 12- and 15-hydroperoxy-eicosatetraenoic acids also over-oxidized peroxiredoxins. Our results suggest that lipoxygenases and cyclooxygenases may affect 2-Cys peroxiredoxin signaling, analogous to NADPH oxidases in the “floodgate” model (Wood, Z. A., Poole, L. B, and Karplus P. A. (2003) Science 300, 600–653). Peroxiredoxin-dependent mechanisms may modulate the receptor-dependent actions of autocoids derived from cellular lipoxygenase and cyclooxygenase catalysis.


Cancer | 2003

Identification of genes that are regulated transcriptionally by Myc in childhood tumors

Elizabeth A. Raetz; Marianne K. H. Kim; Philip J. Moos; B S Marlee Carlson; Carol Bruggers; David K. Hooper; Laura Foot; Tong Liu; Robert Seeger; William L. Carroll

Amplification of the N‐myc oncogene is associated with adverse outcomes in the common childhood tumor, neuroblastoma. Because the transforming properties of Myc are related to its ability to modulate gene expression, the authors used cDNA microarrays to identify potential Myc target genes.


Cancer Investigation | 2004

Impact of microarray technology in clinical oncology.

Elizabeth A. Raetz; Philip J. Moos

Genomic technologies are rapidly evolving and have demonstrated utility inaugmenting oncological pathology or clinical presentation in disease classification and risk of relapse assessment. Numerous malignancies have been subject to microarray examination, and through a variety of analysis methodologies, groups of reporter genes have been identified to generate ‘molecular portraits’ of these diseases. Once validated, it is likely that assessment of the expression levels of subsets of reporter genes will contribute to personalized genomic medicine through diagnosis and selection of treatment options for patients. The dynamic nature of this field ensures that new developments are missing from this review.

Collaboration


Dive into the Philip J. Moos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam L. Cohen

Huntsman Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge