Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip J. Norris is active.

Publication


Featured researches published by Philip J. Norris.


Journal of Virology | 2009

Induction of a Striking Systemic Cytokine Cascade prior to Peak Viremia in Acute Human Immunodeficiency Virus Type 1 Infection, in Contrast to More Modest and Delayed Responses in Acute Hepatitis B and C Virus Infections

Andrea R. Stacey; Philip J. Norris; Li Qin; Elizabeth Haygreen; Elizabeth Taylor; John W. Heitman; Mila Lebedeva; Allan C. deCamp; Dongfeng Li; Douglas Grove; Steven G. Self; Persephone Borrow

ABSTRACT Characterization of the immune responses induced in the initial stages of human immunodeficiency virus type 1 (HIV-1) infection is of critical importance for an understanding of early viral pathogenesis and prophylactic vaccine design. Here, we used sequential plasma samples collected during the eclipse and exponential viral expansion phases from subjects acquiring HIV-1 (or, for comparison, hepatitis B virus [HBV]or hepatitis C virus [HCV]) to determine the nature and kinetics of the earliest systemic elevations in cytokine and chemokine levels in each infection. Plasma viremia was quantitated over time, and levels of 30 cytokines and chemokines were measured using Luminex-based multiplex assays and enzyme-linked immunosorbent assays. The increase in plasma viremia in acute HIV-1 infection was found to be associated with elevations in plasma levels of multiple cytokines and chemokines, including rapid and transient elevations in alpha interferon (IFN-α) and interleukin-15 (IL-15) levels; a large increase in inducible protein 10 (IP-10) levels; rapid and more-sustained increases in tumor necrosis factor alpha and monocyte chemotactic protein 1 levels; more slowly initiated elevations in levels of additional proinflammatory factors including IL-6, IL-8, IL-18, and IFN-γ; and a late-peaking increase in levels of the immunoregulatory cytokine IL-10. Notably, there was comparatively little perturbation in plasma cytokine levels during the same phase of HBV infection and a delayed response of more intermediate magnitude in acute HCV infection, indicating that the rapid activation of a striking systemic cytokine cascade is not a prerequisite for viral clearance (which occurs in a majority of HBV-infected individuals). The intense early cytokine storm in acute HIV-1 infection may have immunopathological consequences, promoting immune activation, viral replication, and CD4+ T-cell loss.


Blood | 2012

Transfusion related acute lung injury: incidence and risk factors

Pearl Toy; Ognjen Gajic; Peter Bacchetti; Mark R. Looney; Michael A. Gropper; Rolf D. Hubmayr; Clifford A. Lowell; Philip J. Norris; Edward L. Murphy; Richard B. Weiskopf; Gregory A. Wilson; Monique Koenigsberg; Deanna Lee; Randy M. Schuller; Ping Wu; Barbara Grimes; Manish J. Gandhi; Jeffrey L. Winters; David C. Mair; Nora V. Hirschler; Rosa Sanchez Rosen; Michael A. Matthay

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. To determine TRALI incidence by prospective, active surveillance and to identify risk factors by a case-control study, 2 academic medical centers enrolled 89 cases and 164 transfused controls. Recipient risk factors identified by multivariate analysis were higher IL-8 levels, liver surgery, chronic alcohol abuse, shock, higher peak airway pressure while being mechanically ventilated, current smoking, and positive fluid balance. Transfusion risk factors were receipt of plasma or whole blood from female donors (odds ratio = 4.5, 95% confidence interval [CI], 1.85-11.2, P = .001), volume of HLA class II antibody with normalized background ratio more than 27.5 (OR = 1.92/100 mL, 95% CI, 1.08-3.4, P = .03), and volume of anti-human neutrophil antigen positive by granulocyte immunofluoresence test (OR = 1.71/100 mL, 95% CI, 1.18-2.5, P = .004). Little or no risk was associated with older red blood cell units, noncognate or weak cognate class II antibody, or class I antibody. Reduced transfusion of plasma from female donors was concurrent with reduced TRALI incidence: 2.57 (95% CI, 1.72-3.86) in 2006 versus 0.81 (95% CI, 0.44-1.49) in 2009 per 10 000 transfused units (P = .002). The identified risk factors provide potential targets for reducing residual TRALI.


Transfusion | 2009

The effect of previous pregnancy and transfusion on HLA alloimmunization in blood donors: implications for a transfusion-related acute lung injury risk reduction strategy

Darrell J. Triulzi; Steven H. Kleinman; Ram Kakaiya; Michael P. Busch; Philip J. Norris; Whitney R. Steele; Simone A. Glynn; Christopher D. Hillyer; Patricia M. Carey; Jerome L. Gottschall; Edward L. Murphy; Jorge A. Rios; Paul M. Ness; David Wright; Danielle M. Carrick; George B. Schreiber

BACKGROUND: Antibodies to human leukocyte antigens (HLA) in donated blood have been implicated as a cause of transfusion‐related acute lung injury (TRALI). A potential measure to reduce the risk of TRALI includes screening plateletpheresis donors for HLA antibodies. The prevalence of HLA antibodies and their relationship to previous transfusion or pregnancy in blood donors was determined.


Journal of Virology | 2004

Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides.

Daniel E. Kaufmann; Paul M. Bailey; John Sidney; Bradford Wagner; Philip J. Norris; Mary N. Johnston; Lisa A. Cosimi; Marylyn M. Addo; Mathias Lichterfeld; Marcus Altfeld; Nicole Frahm; Christian Brander; Alessandro Sette; Bruce D. Walker; Eric S. Rosenberg

ABSTRACT Increasing evidence suggests that human immunodeficiency virus type 1 (HIV-1)-specific CD4 T-cell responses contribute to effective immune control of HIV-1 infection. However, the breadths and specificities of these responses have not been defined. We screened fresh CD8-depleted peripheral blood mononuclear cells (PBMC) from 36 subjects at different stages of HIV-1 infection for virus-specific CD4 responses by gamma interferon enzyme-linked immunospot assay, using 410 overlapping peptides spanning all HIV-1 proteins (based on the clade B consensus sequence). HIV-1-specific CD4 responses were identified in 30 of the 36 individuals studied, with the strongest and broadest responses detected in persons treated in acute infection who underwent treatment interruption. In individuals with identified responses, the total number of recognized HIV-1 peptides ranged from 1 to 36 (median, 7) and the total magnitude of responses ranged from 80 to >14,600 (median, 990) spot-forming cells/106 CD8-depleted PBMC. Neither the total magnitude nor the number of responses correlated with viremia. The most frequent and robust responses were directed against epitopes within the Gag and Nef proteins. Peptides targeted by ≥25% of individuals were then tested for binding to a panel of common HLA-DR molecules. All bound broadly to at least four of the eight alleles tested, and two bound to all of the HLA-DR molecules studied. Fine mapping and HLA restriction of the responses against four of these peptides showed a combination of clustering of epitopes and promiscuous presentation of the same epitopes by different HLA class II alleles. These findings have implications for the design of immunotherapeutic strategies and for testing candidate HIV vaccines.


Science Translational Medicine | 2011

Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

Norman L. Letvin; Srinivas S. Rao; David C. Montefiori; Michael S. Seaman; Yue Sun; So-Yon Lim; Wendy W. Yeh; Mohammed Asmal; Rebecca Gelman; Ling Shen; James B. Whitney; Cathal Seoighe; Miguel Lacerda; Sheila M. Keating; Philip J. Norris; Michael G. Hudgens; Peter B. Gilbert; Adam P. Buzby; Linh Mach; Jinrong Zhang; Harikrishnan Balachandran; George M. Shaw; Stephen D. Schmidt; John Paul Todd; Alan Dodson; John R. Mascola; Gary J. Nabel

A vaccine protecting monkeys against mucosal infection by simian immunodeficiency virus sheds light on immune and genetic correlates of protection. Unraveling Immune Correlates of Vaccine Protection Developing an effective vaccine against HIV-1, the virus that causes AIDS, has been a huge challenge that has stymied AIDS researchers for several decades. A key problem for HIV vaccine trials has been the lack of immune correlates that indicate which antibody and T cell responses in the vaccinees correlate directly with a protective effect. The only HIV vaccine trial to date that has shown a protective effect is the RV144 trial carried out in Thailand between 2003 and 2006, with the final results reported in 2009. In this trial of 16,400 Thai volunteers, those vaccinated with a prime-boost HIV vaccine showed a reduction in the rate of infection by HIV-1 of 31% compared to volunteers given a placebo. The protective effect was seen for up to 3 years after the initial vaccination, but the immune correlates of protection by this vaccine are still not known. In an effort to learn more about possible immune correlates of HIV vaccine protection, Letvin and colleagues used a prime/boost vaccine regimen in monkeys that was similar to that used in the RV144 trial. Monkeys were vaccinated with a plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen and then were challenged with intrarectal doses of one of two isolates of the simian immunodeficiency virus (SIV) every week for 12 weeks. Although the vaccine had no impact on acquisition of the SIVmac251 isolate (which is tough for the monkey immune system to neutralize), the vaccine provided a 50% reduction in infection with the SIVsmE660 isolate (which more readily undergoes neutralization). The authors then examined a variety of immune responses in the protected vaccinated monkeys including cellular, antibody, and innate immune responses; they also examined whether protective host alleles were present in the protected animals. They found that low levels of neutralizing antibodies and a CD4+ T cell response against the HIV envelope (Env) protein correlated with the protective effect. In addition, monkeys that expressed two TRIM5 alleles that help to restrict SIV replication in host cells were protected by the vaccine, whereas monkeys expressing one TRIM5 allele that is permissive for SIV replication were not. This study begins to unravel the immune and genetic correlates of protection in nonhuman primates and highlights the need to scrutinize these types of correlates in future trials of HIV vaccines in human volunteers. The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.


Journal of Virology | 2009

Evidence for Persistent Low-Level Viremia in Individuals Who Control Human Immunodeficiency Virus in the Absence of Antiretroviral Therapy

Hiroyu Hatano; Eric Delwart; Philip J. Norris; Tzong-Hae Lee; Joan Dunn-Williams; Peter W. Hunt; Susan L. Stramer; Jeffrey M. Linnen; Joseph M. McCune; Jeffrey N. Martin; Michael P. Busch; Steven G. Deeks

ABSTRACT A subset of antiretroviral-untreated, human immunodeficiency virus (HIV)-infected individuals are able to maintain undetectable plasma HIV RNA levels in the absence of antiretroviral therapy. These “elite” controllers are of high interest as they may provide novel insights regarding host mechanisms of virus control. The degree to which these individuals have residual plasma viremia has not been well defined. We performed a longitudinal study of 46 elite controllers, defined as HIV-seropositive, antiretroviral-untreated individuals with plasma HIV RNA levels of <50 to 75 copies/ml. The median duration of HIV diagnosis was 13 years, the median baseline CD4+ T-cell count was 753 cells/mm3, and the median duration of follow-up was 16 months. Plasma and cellular HIV RNA levels were measured using the transcription-mediated amplification (TMA) assay (estimated limit of detection of <3.5 copies RNA/ml). A total of 1,117 TMA assays were performed (median of five time points/subject and four replicates/time point). All but one subject had detectable plasma HIV RNA on at least one time point, and 15 (33%) subjects had detectable RNA at all time points. The majority of controllers also had detectable cell-associated RNA and proviral DNA. A mixed-effect linear model showed no strong evidence of change in plasma RNA levels over time. In conclusion, the vast majority (98%) of elite controllers had measurable plasma HIV RNA, often at levels higher than that observed in antiretroviral-treated patients. This confirms the failure to eradicate the virus, even in these unique individuals who are able to reduce plasma viremia to very low levels without antiretroviral therapy.


Journal of Clinical Investigation | 2009

Tregs control the development of symptomatic West Nile virus infection in humans and mice

Marion C. Lanteri; Katie M. O’Brien; Whitney E. Purtha; Mark J. Cameron; Jennifer M. Lund; Rachel E. Owen; John W. Heitman; Brian Custer; Dale F. Hirschkorn; Leslie H. Tobler; Nancy Kiely; Harry E. Prince; Lishomwa C. Ndhlovu; Douglas F. Nixon; Hany Kamel; David J. Kelvin; Michael P. Busch; Alexander Y. Rudensky; Michael S. Diamond; Philip J. Norris

West Nile virus (WNV) causes asymptomatic infection in most humans, but for undefined reasons, approximately 20% of immunocompetent individuals develop West Nile fever, a potentially debilitating febrile illness, and approximately 1% develop neuroinvasive disease syndromes. Notably, since its emergence in 1999, WNV has become the leading cause of epidemic viral encephalitis in North America. We hypothesized that CD4+ Tregs might be differentially regulated in subjects with symptomatic compared with those with asymptomatic WNV infection. Here, we show that in 32 blood donors with acute WNV infection, Tregs expanded significantly in the 3 months after index (RNA+) donations in all subjects. Symptomatic donors exhibited lower Treg frequencies from 2 weeks through 1 year after index donation yet did not show differences in systemic T cell or generalized inflammatory responses. In parallel prospective experimental studies, symptomatic WNV-infected mice also developed lower Treg frequencies compared with asymptomatic mice at 2 weeks after infection. Moreover, Treg-deficient mice developed lethal WNV infection at a higher rate than controls. Together, these results suggest that higher levels of peripheral Tregs after infection protect against severe WNV disease in immunocompetent animals and humans.


The Journal of Infectious Diseases | 2008

Virus and Antibody Dynamics in Acute West Nile Virus Infection

Michael P. Busch; Steven H. Kleinman; Leslie H. Tobler; Hany Kamel; Philip J. Norris; Irina Walsh; Jose L. Matud; Harry E. Prince; Robert S. Lanciotti; David J. Wright; Jeffrey M. Linnen; Sally Caglioti

BACKGROUND The dynamics of the early stages of West Nile virus (WNV) infection can be assessed by follow-up studies of viremic blood donors. METHODS A total of 245 donors with WNV viremia were followed up weekly for 4 weeks and then monthly for up to 6 additional months or until seroconversion. Plasma samples were tested for WNV RNA by transcription-mediated amplification (TMA) and for WNV-specific IgM and IgG antibodies. RNA persistence was investigated by 6 replicate TMA tests; samples that were viremic for >40 days were tested for WNV-neutralizing activity. Follow up of 35 additional viremic donors for up to 404 days was conducted to evaluate persistence of WNV-specific antibody. RESULTS The median time from RNA detection to IgM seroconversion was 3.9 days; to IgG seroconversion, 7.7 days; to RNA negativity by single-replicate TMA, 13.2 days; and to RNA negativity by 6-replicate TMA, 6.1 additional days after results of single-replicate TMA are negative. For 4 donors in whom RNA persisted for >40 days after the index donation, all samples obtained after this threshold were also positive for WNV IgG and neutralizing activity. The mean times to IgM and IgA negativity were 156 and 220 days, respectively. CONCLUSIONS IgM and IgG develop rapidly after viremia and before RNA levels become undetectable, which occurred a mean of 13.2 days after the index donation among donors in this study. WNV RNA detection by replicate TMA rarely persists for >40 days after the index donation and is accompanied by WNV-specific neutralizing antibody, consistent with an absence of WNV transmission via transfusion of seropositive blood components.


PLOS Pathogens | 2012

IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection.

Hilario J. Ramos; Marion C. Lanteri; Gabriele Blahnik; Amina Negash; Mehul S. Suthar; Margaret M. Brassil; Khushbu Sodhi; Piper M. Treuting; Michael P. Busch; Philip J. Norris; Michael Gale

West Nile virus (WNV) is an emerging flavivirus capable of infecting the central nervous system (CNS) and mediating neuronal cell death and tissue destruction. The processes that promote inflammation and encephalitis within the CNS are important for control of WNV disease but, how inflammatory signaling pathways operate to control CNS infection is not defined. Here, we identify IL-1β signaling and the NLRP3 inflammasome as key host restriction factors involved in viral control and CNS disease associated with WNV infection. Individuals presenting with acute WNV infection displayed elevated levels of IL-1β in their plasma over the course of infection, suggesting a role for IL-1β in WNV immunity. Indeed, we found that in a mouse model of infection, WNV induced the acute production of IL-1β in vivo, and that animals lacking the IL-1 receptor or components involved in inflammasome signaling complex exhibited increased susceptibility to WNV pathogenesis. This outcome associated with increased accumulation of virus within the CNS but not peripheral tissues and was further associated with altered kinetics and magnitude of inflammation, reduced quality of the effector CD8+ T cell response and reduced anti-viral activity within the CNS. Importantly, we found that WNV infection triggers production of IL-1β from cortical neurons. Furthermore, we found that IL-1β signaling synergizes with type I IFN to suppress WNV replication in neurons, thus implicating antiviral activity of IL-1β within neurons and control of virus replication within the CNS. Our studies thus define the NLRP3 inflammasome pathway and IL-1β signaling as key features controlling WNV infection and immunity in the CNS, and reveal a novel role for IL-1β in antiviral action that restricts virus replication in neurons.


PLOS ONE | 2011

A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers

Peter W. Hunt; Alan Landay; Elizabeth Sinclair; Jeffrey Martinson; Hiroyu Hatano; Brinda Emu; Philip J. Norris; Michael P. Busch; Jeffrey N. Martin; Cicely Brooks; Joseph M. McCune; Steven G. Deeks

HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127dim), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected “non-controllers” with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P≤0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.

Collaboration


Dive into the Philip J. Norris's collaboration.

Top Co-Authors

Avatar

Michael P. Busch

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sheila M. Keating

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

John W. Heitman

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marion C. Lanteri

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lishomwa C. Ndhlovu

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xutao Deng

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Heather Inglis

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Alan Landay

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge