Philip Lijnzaad
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip Lijnzaad.
Nature Genetics | 2005
Paul Roepman; Lodewyk F. A. Wessels; Nienke Kettelarij; Patrick Kemmeren; Antony J. Miles; Philip Lijnzaad; Marcel G.J. Tilanus; R. Koole; Gert-Jan Hordijk; Peter C. van der Vliet; Marcel J. T. Reinders; P.J. Slootweg; Frank C. P. Holstege
Metastasis is the process by which cancers spread to distinct sites in the body. It is the principal cause of death in individuals suffering from cancer. For some types of cancer, early detection of metastasis at lymph nodes close to the site of the primary tumor is pivotal for appropriate treatment. Because it can be difficult to detect lymph node metastases reliably, many individuals currently receive inappropriate treatment. We show here that DNA microarray gene-expression profiling can detect lymph node metastases for primary head and neck squamous cell carcinomas that arise in the oral cavity and oropharynx. The predictor, established with an 82-tumor training set, outperforms current clinical diagnosis when independently validated. The 102 predictor genes offer unique insights into the processes underlying metastasis. The results show that the metastatic state can be deciphered from the primary tumor gene-expression pattern and that treatment can be substantially improved.
Molecular Cell | 2011
Tineke L. Lenstra; Joris J. Benschop; Tae Soo Kim; Julia M. Schulze; Nathalie Brabers; Thanasis Margaritis; Loes A.L. van de Pasch; Sebastiaan van Heesch; Mariel O. Brok; Marian J. A. Groot Koerkamp; Cheuk W. Ko; Dik van Leenen; Katrin Sameith; Sander R. van Hooff; Philip Lijnzaad; Patrick Kemmeren; Thomas Hentrich; Michael S. Kobor; Stephen Buratowski; Frank C. P. Holstege
Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.
Cell | 2010
Sake van Wageningen; Patrick Kemmeren; Philip Lijnzaad; Thanasis Margaritis; Joris J. Benschop; Inês J. de Castro; Dik van Leenen; Marian J. A. Groot Koerkamp; Cheuk W. Ko; Antony J. Miles; Nathalie Brabers; Mariel O. Brok; Tineke L. Lenstra; Dorothea Fiedler; Like Fokkens; Rodrigo Aldecoa; Eva Apweiler; Virginia Taliadouros; Katrin Sameith; Loes A.L. van de Pasch; Sander R. van Hooff; Linda V. Bakker; Nevan J. Krogan; Berend Snel; Frank C. P. Holstege
To understand relationships between phosphorylation-based signaling pathways, we analyzed 150 deletion mutants of protein kinases and phosphatases in S. cerevisiae using DNA microarrays. Downstream changes in gene expression were treated as a phenotypic readout. Double mutants with synthetic genetic interactions were included to investigate genetic buffering relationships such as redundancy. Three types of genetic buffering relationships are identified: mixed epistasis, complete redundancy, and quantitative redundancy. In mixed epistasis, the most common buffering relationship, different gene sets respond in different epistatic ways. Mixed epistasis arises from pairs of regulators that have only partial overlap in function and that are coupled by additional regulatory links such as repression of one by the other. Such regulatory modules confer the ability to control different combinations of processes depending on condition or context. These properties likely contribute to the evolutionary maintenance of paralogs and indicate a way in which signaling pathways connect for multiprocess control.
Cell | 2014
Patrick Kemmeren; Katrin Sameith; Loes A.L. van de Pasch; Joris J. Benschop; Tineke L. Lenstra; Thanasis Margaritis; Eoghan O’Duibhir; Eva Apweiler; Sake van Wageningen; Cheuk W. Ko; Sebastiaan van Heesch; Mehdi M. Kashani; Giannis Ampatziadis-Michailidis; Mariel O. Brok; Nathalie Brabers; Anthony J. Miles; Diane Bouwmeester; Sander R. van Hooff; Harm van Bakel; Erik Sluiters; Linda V. Bakker; Berend Snel; Philip Lijnzaad; Dik van Leenen; Marian J. A. Groot Koerkamp; Frank C. P. Holstege
To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.
Molecular Cell | 2010
Joris J. Benschop; Nathalie Brabers; Dik van Leenen; Linda V. Bakker; Hanneke W.M. van Deutekom; Nynke L. van Berkum; Eva Apweiler; Philip Lijnzaad; Frank C. P. Holstege; Patrick Kemmeren
Analyses of biological processes would benefit from accurate definitions of protein complexes. High-throughput mass spectrometry data offer the possibility of systematically defining protein complexes; however, the predicted compositions vary substantially depending on the algorithm applied. We determine consensus compositions for 409 core protein complexes from Saccharomyces cerevisiae by merging previous predictions with a new approach. Various analyses indicate that the consensus is comprehensive and of high quality. For 85 out of 259 complexes not recorded in GO, literature search revealed strong support in the form of coprecipitation. New complexes were verified by an independent interaction assay and by gene expression profiling of strains with deleted subunits, often revealing which cellular processes are affected. The consensus complexes are available in various formats, including a merge with GO, resulting in 518 protein complex compositions. The utility is further demonstrated by comparison with binary interaction data to reveal interactions between core complexes.
Nucleic Acids Research | 2011
Marie-Claire Daugeron; Tineke L. Lenstra; Martina Frizzarin; Basma El Yacoubi; Xipeng Liu; Agnès Baudin-Baillieu; Philip Lijnzaad; Laurence Decourty; Cosmin Saveanu; Alain Jacquier; Frank C. P. Holstege; Valérie de Crécy-Lagard; Herman van Tilbeurgh; Domenico Libri
The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t6A37) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t6A37 formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.
Molecular Systems Biology | 2014
Eoghan O'Duibhir; Philip Lijnzaad; Joris J. Benschop; Tineke L. Lenstra; Dik van Leenen; Marian J. A. Groot Koerkamp; Thanasis Margaritis; Mariel O. Brok; Patrick Kemmeren; Frank C. P. Holstege
Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.
Molecular Systems Biology | 2009
Thanasis Margaritis; Philip Lijnzaad; Dik van Leenen; Diane Bouwmeester; Patrick Kemmeren; Sander R. van Hooff; Frank C. P. Holstege
DNA microarray technology is a powerful tool for monitoring gene expression or for finding the location of DNA‐bound proteins. DNA microarrays can suffer from gene‐specific dye bias (GSDB), causing some probes to be affected more by the dye than by the sample. This results in large measurement errors, which vary considerably for different probes and also across different hybridizations. GSDB is not corrected by conventional normalization and has been difficult to address systematically because of its variance. We show that GSDB is influenced by label incorporation efficiency, explaining the variation of GSDB across different hybridizations. A correction method (Gene‐ And Slide‐Specific Correction, GASSCO) is presented, whereby sequence‐specific corrections are modulated by the overall bias of individual hybridizations. GASSCO outperforms earlier methods and works well on a variety of publically available datasets covering a range of platforms, organisms and applications, including ChIP on chip. A sequence‐based model is also presented, which predicts which probes will suffer most from GSDB, useful for microarray probe design and correction of individual hybridizations. Software implementing the method is publicly available.
Proteins | 1996
Philip Lijnzaad; Herman J. C. Berendsen; Patrick Argos
A survey of hydrophobic patches on the surface of 112 soluble, monomeric proteins is presented. The largest patch on each individual protein averages around 400 Å2 but can range from 200 to 1,200 Å2. These areas are not correlated to the sizes of the proteins and only weakly to their apolar surface fraction. Ala, Lys, and Pro have dominating contributions to the apolar surface for smaller patches, while those of the hydrophobic amino acids become more important as the patch size Increases. The hydrophilic amino acids expose an approximately constant fraction of their apolar area independent of patch size; the hydrophobic residue types reach similar exposure only in the larger patches. Though the mobility of residues on the surface is generally higher, it decreases for hydrophilic residues with Increasing patch size. Several characteristics of hydrophobic patches catalogued here should prove useful in the design and engineering of proteins.
Proteins | 1996
Philip Lijnzaad; Herman J. C. Berendsen; Patrick Argos
A method for the detection of hydrophobic patches on the surfaces of protein tertiary structures is presented. It delineates explicit contiguous pieces of surface of arbitrary size and shape that consist solely of carbon and sulphur atoms using a dot representation of the solvent‐accessible surface. The technique is also useful in detecting surface segments with other characteristics, such as polar patches. Its potential as a tool in the study of protein‐protein interactions and substrate recognition is demonstrated by applying the method to myoglobin, Leu/Ile/Val‐binding protein, lipase, lysozyme, azurin, triose phosphate isomerase, carbonic anhydrase, and phosphoglycerate kinase. Only the largest patches, having sizes exceeding random expectation, are deemed meaningful. In addition to well‐known hydrophobic patches on these proteins, a number of other patches are found, and their significance is discussed. The method is simple, fast, and robust. The program text is obtainable by anonymous ftp.