Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Llewellyn is active.

Publication


Featured researches published by Philip Llewellyn.


Langmuir | 2008

High Uptakes of CO2 and CH4 in Mesoporous Metal—Organic Frameworks MIL-100 and MIL-101

Philip Llewellyn; Sandrine Bourrelly; Christian Serre; Alexandre Vimont; Marco Daturi; Lomig Hamon; Guy De Weireld; Jong-San Chang; Do-Young Hong; Young Kyu Hwang; Sung Hwa Jhung; Gérard Férey

Mesoporous MOFs MIL-100 and MIL-101 adsorb huge amounts of CO2 and CH4. Characterization was performed using both manometry and gravimetry in different laboratories for isotherms coupled with microcalorimetry and FTIR to specify the gas-solid interactions. In particular, the uptake of carbon dioxide in MIL-101 has been shown to occur with a record capacity of 40 mmol g(-1) or 390 cm3STP cm(-3) at 5 MPa and 303 K.


Chemical Society Reviews | 2011

Why hybrid porous solids capture greenhouse gases

Gérard Férey; Christian Serre; Thomas Devic; Guillaume Maurin; Hervé Jobic; Philip Llewellyn; Guy De Weireld; Alexandre Vimont; Marco Daturi; Jong-San Chang

Hybrid porous solids, with their tunable structures, their multifunctional properties and their numerous applications, are currently topical, particularly in the domain of adsorption and storage of greenhouse gases. Most of the data reported so far concern the performances of these solids in this domain, particularly in terms of adsorbed amounts of gas but do not explain at the atomic level why and how adsorption and storage occur. From a combination of structural, spectroscopic, thermodynamic experiments and of molecular simulations, this tutorial review proposes answers to these open questions with a special emphasis on CO(2) and CH(4) storage by some rigid and flexible hybrid porous materials.


Studies in Surface Science and Catalysis | 2007

Is the BET equation applicable to microporous adsorbents

Jean Rouquerol; Philip Llewellyn; Françoise Rouquerol

This chapter focuses on how the BET equation is applicable to microporous adsorbents. The BET method can be considered, essentially, as a mathematical means to analyze the adsorption isotherm to derive a “monolayer capacity” and then a surface area. The BET method should not be applied to adsorbents containing micropores in every case. Beyond the “linearity criterion” of the BET plot, two other criteria are found necessary, especially in the presence of micropores, to draw the specific advantage of the BET equation. Calorimetric data for adsorption on microporous adsorbents confirm the fact that the BET monolayer content mostly corresponds to the adsorbate in energetical interaction with the surface. For adsorbents containing micropores, the concept of “BET monolayer content” is misleading and could well be replaced by that of “BET strong retention capacity.” This concept includes the adsorbate present in the micropores together with the content of the statistical monolayer on the non-microporous portion of the surface.


Journal of the American Chemical Society | 2009

Co-adsorption and Separation of CO2-CH4 Mixtures in the Highly Flexible MIL-53(Cr) MOF

Lomig Hamon; Philip Llewellyn; Thomas Devic; Aziz Ghoufi; Guillaume Clet; Vincent Guillerm; Gerhard D. Pirngruber; Guillaume Maurin; Christian Serre; Gordon Driver; Wouter van Beek; Elsa Jolimaitre; Alexandre Vimont; Marco Daturi; Gérard Férey

The present study attempts to understand the use of the flexible porous chromium terephthalate Cr(OH)(O(2)C-C(6)H(4)-CO(2)) denoted MIL-53(Cr) (MIL = Material from Institut Lavoisier) for the separation of mixtures of CO(2) and CH(4) at ambient temperature. The coadsorption of CO(2) and CH(4) was studied by a variety of different techniques. In situ synchrotron X-ray Powder Diffraction allowed study of the breathing of the solid upon adsorption of the gas mixtures and simultaneously measured Raman spectra yielded an estimation of the adsorbed quantities of CO(2) and CH(4), as well as a quantification of the fraction of the narrow pore (NP) and the large pore (LP) form of MIL-53. Quantitative coadsorption data were then measured by gravimetry and by breakthrough curves. In addition, computer simulation was performed to calculate the composition of the adsorbed phase in comparison with experimental equilibrium isotherms and breakthrough results. The body of results shows that the coadsorption of CO(2) and CH(4) leads to a similar breathing of MIL-53(Cr) as with pure CO(2). The breathing is mainly controlled by the partial pressure of CO(2), but increasing the CH(4) content progressively decreases the transformation of LP to NP. CH(4) seems to be excluded from the NP form, which is filled exclusively by CO(2) molecules. The consequences in terms of CO(2)/CH(4) selectivity and the possible use of MIL-53(Cr) in a PSA process are discussed.


Nature | 2015

Methane storage in flexible metal-organic frameworks with intrinsic thermal management.

Jarad A. Mason; Julia Oktawiec; Mercedes K. Taylor; Matthew R. Hudson; Julien Rodriguez; Jonathan E. Bachman; Miguel I. Gonzalez; Antonio Cervellino; Antonietta Guagliardi; Craig M. Brown; Philip Llewellyn; Norberto Masciocchi; Jeffrey R. Long

As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage. Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures. Although activated carbons, zeolites, and metal–organic frameworks have been investigated extensively for CH4 storage, there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal–organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp2− = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp ‘step’. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents, while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.


Journal of the American Chemical Society | 2008

Hydrocarbon Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr)

Thuy Khuong Trung; Philippe Trens; Nathalie Tanchoux; Sandrine Bourrelly; Philip Llewellyn; Sandra Loera-Serna; Christian Serre; Thierry Loiseau; François Fajula; Gérard Férey

A general study of the adsorption of n-alkanes in the flexible metal organic framework (MOF) MIL-53 is presented. The roles of the length of the alkyl chain (n = 1-9), the nature of the metal (Al, Cr), and temperature were investigated. The shape of the adsorption curves is driven by the alkyl chain length of the n-alkanes. While traditional type-I isotherms are observed for short alkanes (n = 1, 2), adsorbates with longer chains induce clear substeps in the isotherm curves whose positions depend on the chain length. Such substeps are due to a breathing phenomenon, as proven by ex situ X-ray diffraction analysis. They strongly depend on the amount of adsorbate in the pores and on the nature of the metal (Al, Cr), which, for a given alkane, leads to a strong change in the substep positions despite the similar characteristics of the two metals. The adsorption kinetics are highly sensitive to small variations in temperature. Their detailed analysis in different regions of the isotherms shows in some cases the existence of distinct diffusion regimes and/or conformations within the flexible phases.


Journal of the American Chemical Society | 2009

Complex Adsorption of Short Linear Alkanes in the Flexible Metal-Organic-Framework MIL-53(Fe)

Philip Llewellyn; Patricia Horcajada; G. Maurin; Thomas Devic; Nilton Rosenbach; Sandrine Bourrelly; Christian Serre; Dominique Vincent; Sandra Loera-Serna; Yaroslav Filinchuk; Gérard Férey

This investigation is based on a combination of experimental tools completed by a computational approach to deeply characterize the unusual adsorption behavior of the flexible MIL-53(Fe) in the presence of short linear alkanes. In contrast to the aluminum or chromium analogues we previously reported, the iron MIL-53 solid, which initially exhibits a closed structure in the dry state, shows more complex adsorption isotherms with multisteps occurring at pressures that depend on the nature of the alkane. This behavior has been attributed to the existence of four discrete pore openings during the whole adsorption process. Molecular simulations coupled with in situ X-ray powder diffraction were able to uncover these various structural states.


Journal of the American Chemical Society | 2010

Multistep N2 Breathing in the Metal-Organic Framework Co(1,4-benzenedipyrazolate)

Fabrice Salles; Guillaume Maurin; Christian Serre; Philip Llewellyn; Christina Knöfel; Hye Jin Choi; Yaroslav Filinchuk; Laetitia Oliviero; Alexandre Vimont; Jeffrey R. Long; Gérard Férey

A variety of spectroscopic techniques combined with in situ pressure-controlled X-ray diffraction and molecular simulations have been utilized to characterize the five-step phase transition observed upon N(2) adsorption within the high-surface area metal-organic framework Co(BDP) (BDP(2-) = 1,4-benzenedipyrozolate). The computationally assisted structure determinations reveal structural changes involving the orientation of the benzene rings relative to the pyrazolate rings, the dihedral angles for the pyrazolate rings bound at the metal centers, and a change in the metal coordination geometry from square planar to tetrahedral. Variable-temperature magnetic susceptibility measurements and in situ infrared and UV-vis-NIR spectroscopic measurements provide strong corroborating evidence for the observed changes in structure. In addition, the results from in situ microcalorimetry measurements show that an additional heat of 2 kJ/mol is required for each of the first four transitions, while 7 kJ/mol is necessary for the last step involving the transformation of Co(II) from square planar to tetrahedral. Based on the enthalpy, a weak N(2) interaction with the open Co(II) coordination sites is proposed for the first four phases, which is supported by Monte Carlo simulations.


Journal of the American Chemical Society | 2010

Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr)

Sandrine Bourrelly; Béatrice Moulin; Angel Rivera; Guillaume Maurin; Sabine Devautour-Vinot; Christian Serre; Thomas Devic; Patricia Horcajada; Alexandre Vimont; Guillaume Clet; Marco Daturi; Jean-Claude Lavalley; Sandra Loera-Serna; Renaud Denoyel; Philip Llewellyn; Gérard Férey

A comparison of the adsorption of water, methanol, and ethanol polar vapors by the flexible porous chromium(III) terephthalate MIL-53(Cr) was investigated by complementary techniques including adsorption gravimetry, ex situ X-ray powder diffraction, microcalorimetry, thermal analysis, IR spectroscopy, and molecular modeling. The breathing steps observed during adsorption strongly depend on the nature of the vapor. With water, a significant contraction of the framework is observed. For the alcohols, the initial contraction is followed by an expansion of the framework. A combination of IR analysis, X-ray diffraction, and computer modeling leads to the molecular localization of the guest molecules and to the identification of the specific guest-guest and host-guest interactions. The enthalpies of adsorption, measured by microcalorimetry, show that the strength of the interactions decreases from ethanol to water. Differential scanning calorimetry experiments on an EtOH/H(2)O mixture suggest a selective adsorption of ethanol over water.


Advanced Materials | 2012

Energy-Efficient Dehumidification over Hierachically Porous Metal–Organic Frameworks as Advanced Water Adsorbents

You Kyong Seo; Ji Woong Yoon; Ji Sun Lee; Young Kyu Hwang; Chul-Ho Jun; Jong San Chang; Stefan Wuttke; Philippe Bazin; Alexandre Vimont; Marco Daturi; Sandrine Bourrelly; Philip Llewellyn; Patricia Horcajada; Christian Serre; Gérard Férey

Water sorption technologies are widely used commercially in many contexts, including industrial or indoor desiccant applications such as desiccant dehumidifiers, gas dryers, adsorptive air conditioning systems, fresh water production, adsorption heat transformation, etc.[1] In recent years, the potential for energy savings through improved efficiency has received increased attention, particularly as low-grade thermal energy or solar energy could be utilized. Currently, silica gel and zeolites are widely utilized commercially, often formed into corrugated honeycomb rotors.[1] As these sorbents typically must be heated above 150 °C during the desorption step, these sorbents are far from ideal in terms of energy consumption. There are additional issues with the level of dehumidification that these materials are able to achieve.[1] Improved energy efficiency requires advanced water adsorbents that can be regenerated together with the removal of a large amount of water vapor from humid conditions.[1] If such materials could operate at or below 80 °C, they could utilize readily available waste heat, leading to further energy savings. Among the existing classes of porous solids, crystalline metal–organic frameworks (MOFs)[2] are currently of great

Collaboration


Dive into the Philip Llewellyn's collaboration.

Top Co-Authors

Avatar

Stefan Kaskel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Maurin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Rouquerol

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Férey

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renaud Denoyel

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Y. Grillet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge