Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Matich is active.

Publication


Featured researches published by Philip Matich.


Biological Reviews | 2012

Applying stable isotopes to examine food-web structure: an overview of analytical tools

Craig A. Layman; Márcio S. Araújo; Ross E. Boucek; Caroline M. Hammerschlag-Peyer; Elizabeth Harrison; Zachary R. Jud; Philip Matich; Adam E. Rosenblatt; Jeremy J. Vaudo; Lauren A. Yeager; David M. Post; Stuart Bearhop

Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food‐web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food‐web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.


Journal of Animal Ecology | 2014

Multi‐tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary

Philip Matich; Michael R. Heithaus

Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions will be an important step in fully understanding the ecological role of predators and how ecological roles may vary with environmental and anthropogenic changes.


Journal of Fish Biology | 2010

Mother–offspring isotope fractionation in two species of placentatrophic sharks

Jeremy J. Vaudo; Philip Matich; Michael R. Heithaus

Stable-isotope values of a scalloped hammerhead Sphyrna lewini and blacktip shark Carcharhinus limbatus and their respective embryos were analysed. Embryos of both species were enriched in δ(15) N compared to their mothers (0·82 and 0·88‰, respectively), but fractionation of δ(13) C varied. Embryonic S. lewini were enriched (1·00‰) in δ(13) C while C. limbatus were depleted (0·27‰) relative to their mothers.


Nature Ecology and Evolution | 2018

A global perspective on the trophic geography of sharks

Christopher S. Bird; Ana Veríssimo; Sarah Magozzi; Kátya G. Abrantes; Alex Aguilar; Hassan Al-Reasi; Adam Barnett; Dana M. Bethea; Gérard Biais; Asunción Borrell; Marc Bouchoucha; Mariah Boyle; Edward J. Brooks; Juerg M. Brunnschweiler; Paco Bustamante; Aaron B. Carlisle; Diana Catarino; Stéphane Caut; Yves Cherel; Tiphaine Chouvelon; Diana A. Churchill; Javier Ciancio; Julien M. Claes; Ana Colaço; Dean L. Courtney; Pierre Cresson; Ryan Daly; Leigh De Necker; Tetsuya Endo; Ivone Figueiredo

Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.Carbon isotopic analysis reveals global biogeographic traits in shark trophic interactions, and sheds light on the diverse foraging behaviour of sharks.


Marine Environmental Research | 2017

Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia)

Philip Matich; Jeremy Kiszka; Johann Mourier; Serge Planes; Michael R. Heithaus

Food web structure is shaped by interactions within and across trophic levels. As such, understanding how the presence and absence of predators, prey, and competitors affect species foraging patterns is important for predicting the consequences of changes in species abundances, distributions, and behaviors. Here, we used plasma δ13C and δ15N values from juvenile blacktip reef sharks (Carcharhinus melanopterus) and juvenile sicklefin lemon sharks (Negaprion acutidens) to investigate how species co-occurrence affects their trophic interactions in littoral waters of Moorea, French Polynesia. Co-occurrence led to isotopic niche partitioning among sharks within nurseries, with significant increases in δ15N values among sicklefin lemon sharks, and significant decreases in δ15N among blacktip reef sharks. Niche segregation likely promotes coexistence of these two predators during early years of growth and development, but data do not suggest coexistence affects life history traits, such as body size, body condition, and ontogenetic niche shifts. Plasticity in trophic niches among juvenile blacktip reef sharks and sicklefin lemon sharks also suggests these predators are able to account for changes in community structure, resource availability, and intra-guild competition, and may fill similar functional roles in the absence of the other species, which is important as environmental change and human impacts persist in coral reef ecosystems.


Journal of Fish Biology | 2017

Trophic redundancy among fishes in an East African nearshore seagrass community inferred from stable‐isotope analysis

Philip Matich; Jeremy Kiszka; Kirk R. Gastrich; Michael R. Heithaus

Stable-isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food-web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ13 C and δ15 N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio-temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food-web integrity.


Journal of Animal Ecology | 2011

Contrasting patterns of individual specialization and trophic coupling in two marine apex predators.

Philip Matich; Michael R. Heithaus; Craig A. Layman


Marine Ecology Progress Series | 2012

Effects of an extreme temperature event on the behavior and age structure of an estuarine top predator, Carcharhinus leucas

Philip Matich; Michael R. Heithaus


Oceanography | 2013

The Roles of Large Top Predators in Coastal Ecosystems: New Insights from long Term Ecological Research

Adam E. Rosenblatt; Michael R. Heithaus; Martha E. Mather; Philip Matich; James C. Nifong; William J. Ripple; Brian R. Silliman


Oecologia | 2015

Individual variation in ontogenetic niche shifts in habitat use and movement patterns of a large estuarine predator (Carcharhinus leucas)

Philip Matich; Michael R. Heithaus

Collaboration


Dive into the Philip Matich's collaboration.

Top Co-Authors

Avatar

Michael R. Heithaus

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Jeremy Kiszka

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Planes

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Craig A. Layman

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jeremy J. Vaudo

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Kirk R. Gastrich

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Ross E. Boucek

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Veríssimo

Virginia Institute of Marine Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge