Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Michael Reaper is active.

Publication


Featured researches published by Philip Michael Reaper.


Cancer Research | 2004

Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM

Ian Hickson; Yan Zhao; Caroline Richardson; Sharon J. Green; Niall Morrison Barr Martin; Alisdair I. Orr; Philip Michael Reaper; Nicola J. Curtin; Graeme Cameron Murray Smith

The serine/threonine protein kinase ATM signals to cell cycle and DNA repair components by phosphorylating downstream targets such as p53, CHK2, NBS1, and BRCA1. Mutation of ATM occurs in the human autosomal recessive disorder ataxia-telangiectasia, which is characterized by hypersensitivity to ionizing radiation and a failure of cells to arrest the cell cycle after the induction of DNA double-strand breaks. It has thus been proposed that ATM inhibition would cause cellular radio- and chemosensitization. Through screening a small molecule compound library developed for the phosphatidylinositol 3′-kinase–like kinase family, we identified an ATP-competitive inhibitor, 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (KU-55933), that inhibits ATM with an IC50 of 13 nmol/L and a Ki of 2.2 nmol/L. KU-55933 shows specificity with respect to inhibition of other phosphatidylinositol 3′-kinase–like kinases. Cellular inhibition of ATM by KU-55933 was demonstrated by the ablation of ionizing radiation-dependent phosphorylation of a range of ATM targets, including p53, γH2AX, NBS1, and SMC1. KU-55933 did not show inhibition of UV light DNA damage induced cellular phosphorylation events. Exposure of cells to KU-55933 resulted in a significant sensitization to the cytotoxic effects of ionizing radiation and to the DNA double-strand break-inducing chemotherapeutic agents, etoposide, doxorubicin, and camptothecin. Inhibition of ATM by KU-55933 also caused a loss of ionizing radiation-induced cell cycle arrest. By contrast, KU-55933 did not potentiate the cytotoxic effects of ionizing radiation on ataxia-telangiectasia cells, nor did it affect their cell cycle profile after DNA damage. We conclude that KU-55933 is a novel, specific, and potent inhibitor of the ATM kinase.


Nature Chemical Biology | 2011

Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR

Philip Michael Reaper; Matthew R. Griffiths; Joanna M Long; Jean-Damien Charrier; Somhairle MacCormick; Peter Charlton; Julian Golec; John Pollard

Here we report a comprehensive biological characterization of a potent and selective small-molecule inhibitor of the DNA damage response (DDR) kinase ATR. We show a profound synthetic lethal interaction between ATR and the ATM-p53 tumor suppressor pathway in cells treated with DNA-damaging agents and establish ATR inhibition as a way to transform the outcome for patients with cancer treated with ionizing radiation or genotoxic drugs.


Cell Death and Disease | 2012

Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation

Emmanouil Fokas; Remko Prevo; John Pollard; Philip Michael Reaper; Peter Charlton; B Cornelissen; Katherine A. Vallis; Ester M. Hammond; M M Olcina; W Gillies McKenna; Ruth J. Muschel; Thomas Brunner

Combined radiochemotherapy is the currently used therapy for locally advanced pancreatic ductal adenocarcinoma (PDAC), but normal tissue toxicity limits its application. Here we test the hypothesis that inhibition of ATR (ATM-Rad3-related) could increase the sensitivity of the cancer cells to radiation or chemotherapy without affecting normal cells. We tested VE-822, an ATR inhibitor, for in vitro and in vivo radiosensitization. Chk1 phosphorylation was used to indicate ATR activity, γH2AX and 53BP1 foci as evidence of DNA damage and Rad51 foci for homologous recombination activity. Sensitivity to radiation (XRT) and gemcitabine was measured with clonogenic assays in vitro and tumor growth delay in vivo. Murine intestinal damage was evaluated after abdominal XRT. VE-822 inhibited ATR in vitro and in vivo. VE-822 decreased maintenance of cell-cycle checkpoints, increased persistent DNA damage and decreased homologous recombination in irradiated cancer cells. VE-822 decreased survival of pancreatic cancer cells but not normal cells in response to XRT or gemcitabine. VE-822 markedly prolonged growth delay of pancreatic cancer xenografts after XRT and gemcitabine-based chemoradiation without augmenting normal cell or tissue toxicity. These findings support ATR inhibition as a promising new approach to improve the therapeutic ration of radiochemotherapy for patients with PDAC.


Journal of Medicinal Chemistry | 2011

Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents.

Jean-Damien Charrier; Steven Durrant; Julian Golec; David Kay; Ronald Knegtel; Somhairle MacCormick; Michael Mortimore; Michael O'donnell; Joanne Pinder; Philip Michael Reaper; Alistair Rutherford; Paul Wang; Stephen Young; John Pollard

DNA-damaging agents are among the most frequently used anticancer drugs. However, they provide only modest benefit in most cancers. This may be attributed to a genome maintenance network, the DNA damage response (DDR), that recognizes and repairs damaged DNA. ATR is a major regulator of the DDR and an attractive anticancer target. Herein, we describe the discovery of a series of aminopyrazines with potent and selective ATR inhibition. Compound 45 inhibits ATR with a K(i) of 6 nM, shows >600-fold selectivity over related kinases ATM or DNA-PK, and blocks ATR signaling in cells with an IC(50) of 0.42 μM. Using this compound, we show that ATR inhibition markedly enhances death induced by DNA-damaging agents in certain cancers but not normal cells. This differential response between cancer and normal cells highlights the great potential for ATR inhibition as a novel mechanism to dramatically increase the efficacy of many established drugs and ionizing radiation.


Cancer Biology & Therapy | 2012

The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy

Remko Prevo; Emmanouil Fokas; Philip Michael Reaper; Peter Charlton; John Pollard; W. Gillies McKenna; Ruth J. Muschel; Thomas Brunner

DNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology. Inhibition of the key DNA damage response kinase ATR has been suggested as an attractive approach for sensitization of tumor cells to DNA damaging agents, but specific ATR inhibitors have remained elusive. Here we investigated the sensitization potential of the first highly selective and potent ATR inhibitor, VE-821, in vitro. VE-821 inhibited radiation- and gemcitabine-induced phosphorylation of Chk1, confirming inhibition of ATR signaling. Consistently, VE-821 significantly enhanced the sensitivity of PSN-1, MiaPaCa-2 and primary PancM pancreatic cancer cells to radiation and gemcitabine under both normoxic and hypoxic conditions. ATR inhibition by VE-821 led to inhibition of radiation-induced G2/M arrest in cancer cells. Reduced cancer cell radiosurvival following treatment with VE-821 was also accompanied by increased DNA damage and inhibition of homologous recombination repair, as evidenced by persistence of γH2AX and 53BP1 foci and inhibition of Rad51 foci, respectively. These findings support ATR inhibition as a novel approach to improve the efficacy and therapeutic index of standard cancer treatments across a large proportion of pancreatic cancer patients.


Cancer Research | 2014

ATR Inhibitors VE-821 and VX-970 Sensitize Cancer Cells to Topoisomerase I Inhibitors by Disabling DNA Replication Initiation and Fork Elongation Responses

Rozenn Jossé; Scott E. Martin; Rajarshi Guha; Pinar Ormanoglu; Thomas D. Pfister; Philip Michael Reaper; Christopher S Barnes; Julie Jones; Peter Charlton; John Pollard; Joel Morris; James H. Doroshow; Yves Pommier

Camptothecin and its derivatives, topotecan and irinotecan, are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs killing cancer cells by producing replication-associated DNA double-strand breaks, and the indenoisoquinoline LMP-400 (indotecan) is a novel Top1 inhibitor in clinical trial. To develop novel drug combinations, we conducted a synthetic lethal siRNA screen using a library that targets nearly 7,000 human genes. Depletion of ATR, the main transducer of replication stress, came as a top candidate gene for camptothecin synthetic lethality. Validation studies using ATR siRNA and the ATR inhibitor VE-821 confirmed marked antiproliferative synergy with camptothecin and even greater synergy with LMP-400. Single-cell analyses and DNA fiber combing assays showed that VE-821 abrogates the S-phase replication elongation checkpoint and the replication origin-firing checkpoint induced by camptothecin and LMP-400. As expected, the combination of Top1 inhibitors with VE-821 inhibited the phosphorylation of ATR and Chk1; however, it strongly induced γH2AX. In cells treated with the combination, the γH2AX pattern changed over time from the well-defined Top1-induced damage foci to an intense peripheral and diffuse nuclear staining, which could be used as response biomarker. Finally, the clinical derivative of VE-821, VX-970, enhanced the in vivo tumor response to irinotecan without additional toxicity. A key implication of our work is the mechanistic rationale and proof of principle it provides to evaluate the combination of Top1 inhibitors with ATR inhibitors in clinical trials.


Cell Cycle | 2004

Activation of the DNA damage response by telomere attrition: a passage to cellular senescence.

Philip Michael Reaper; Fabrizio d'Adda di Fagagna

Critical telomere shortening induces senescence in many normal human cell types grown in culture. Recentdata have revealed that dysfunctional telomeres can resemble certain forms of DNA damage, and point to a role for DNA damage signaling in the establishment and maintenance of telomere-initiated senescence. Here, we review these new observations and highlight potential avenues of future research. We consider the identities of the key DNA damage response factors involved in senescence and discuss a model for the molecular events occurring in pre-senescent cells that ultimately lead to a permanent cell cycle arrest phenotype.


Nature Communications | 2016

ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A

Chris T. Williamson; Rowan Miller; Helen N. Pemberton; Samuel E. Jones; James D. Campbell; Asha Konde; Nicholas Badham; Rumana Rafiq; Rachel Brough; Aditi Gulati; Colm J. Ryan; Jeff Francis; Peter B. Vermulen; Andrew R. Reynolds; Philip Michael Reaper; John Pollard; Alan Ashworth; Christopher J. Lord

Identifying genetic biomarkers of synthetic lethal drug sensitivity effects provides one approach to the development of targeted cancer therapies. Mutations in ARID1A represent one of the most common molecular alterations in human cancer, but therapeutic approaches that target these defects are not yet clinically available. We demonstrate that defects in ARID1A sensitize tumour cells to clinical inhibitors of the DNA damage checkpoint kinase, ATR, both in vitro and in vivo. Mechanistically, ARID1A deficiency results in topoisomerase 2A and cell cycle defects, which cause an increased reliance on ATR checkpoint activity. In ARID1A mutant tumour cells, inhibition of ATR triggers premature mitotic entry, genomic instability and apoptosis. The data presented here provide the pre-clinical and mechanistic rationale for assessing ARID1A defects as a biomarker of single-agent ATR inhibitor response and represents a novel synthetic lethal approach to targeting tumour cells.


Cell Reports | 2016

Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities

Kumar Sanjiv; Anna Hagenkort; José Manuel Calderón-Montaño; Tobias Koolmeister; Philip Michael Reaper; Oliver Mortusewicz; Sylvain A. Jacques; Raoul V. Kuiper; Niklas Schultz; Martin Scobie; Peter Charlton; John Pollard; Ulrika Warpman Berglund; Mikael Altun; Thomas Helleday

Summary ATR and CHK1 maintain cancer cell survival under replication stress and inhibitors of both kinases are currently undergoing clinical trials. As ATR activity is increased after CHK1 inhibition, we hypothesized that this may indicate an increased reliance on ATR for survival. Indeed, we observe that replication stress induced by the CHK1 inhibitor AZD7762 results in replication catastrophe and apoptosis, when combined with the ATR inhibitor VE-821 specifically in cancer cells. Combined treatment with ATR and CHK1 inhibitors leads to replication fork arrest, ssDNA accumulation, replication collapse, and synergistic cell death in cancer cells in vitro and in vivo. Inhibition of CDK reversed replication stress and synthetic lethality, demonstrating that regulation of origin firing by ATR and CHK1 explains the synthetic lethality. In conclusion, this study exemplifies cancer-specific synthetic lethality between two proteins in the same pathway and raises the prospect of combining ATR and CHK1 inhibitors as promising cancer therapy.


Molecular Oncology | 2015

Development of pharmacodynamic biomarkers for ATR inhibitors

Tao Chen; Fiona K. Middleton; Susanna Falcon; Philip Michael Reaper; John Pollard; Nicola J. Curtin

ATR, which signals DNA damage to S/G2 cell cycle checkpoints and for repair, is an attractive target in cancer therapy. ATR inhibitors are being developed and a pharmacodynamic assay is needed to support clinical studies.

Collaboration


Dive into the Philip Michael Reaper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Kay

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge