Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip N. Borer is active.

Publication


Featured researches published by Philip N. Borer.


Journal of Molecular Biology | 1974

Stability of ribonucleic acid double-stranded helices

Philip N. Borer; Barbara Dengler; Ignacio Tinoco; Olke C. Uhlenbeck

Abstract The hypochromicity, as a function of temperature for 19 oligoribonucleotides capable of forming perfectly base-paired double helices, is used to extract thermodynamic parameters of helix formation. The data are analyzed by an all or none model of helix melting which permits assignment of Δ G , Δ H , and Δ S of formation to each of the ten possible Watson-Crick base-paired nearest-neighbor sequences. Helix stability is found to have a striking dependence on sequence, and formulae are provided to predict the T m of any RNA double helix of known sequence.


Journal of Molecular Biology | 1973

Stability of RNA hairpin loops: A6-Cm-U6

Olke C. Uhlenbeck; Philip N. Borer; Barbara Dengler; Ignacio Tinoco

The thermodynamics and circular dichroism of a series of A6-Cm-U6 (m = 4, 5, 6 or 8) oligoribonucleotides have been studied. These molecules form intramolecular hairpin loops at low temperatures and therefore are useful models for similar structures which occur in larger, natural RNA molecules. The stability of the helix forming the stem of these loops was found to be considerably greater than an intermolecular helix with the same length and composition. The most stable loop is m = 6. The enthalpy for initiation of the loop is unfavorable; it ranges from + 24 kcal, for m = 4 to + 21 kcal, for m = 6. The maximum in stability for the C6 loop and the large positive enthalpy for loop initiation are in disagreement with expectations from simple theories assuming a Gaussian distribution of end-to-end distances. Loop strain for m = 4 and m = 5 and the unstacking of the cytosines on loop formation are likely physical explanations for these thermodynamic data. The circular dichroism spectrum of cytosine residues in the C6 and C8 loops is very similar to the spectrum of single-stranded oligoribocytidylate. However, the cytosine residues in the C5 loop have a very different circular dichroism spectrum from the corresponding oligo(C5) spectrum. In accordance with the thermodynamic data, we conclude from the circular dichroism data that the C5 loop has an altered conformation from the C5 and C8 loops.


Biochemistry | 2002

Affinities of packaging domain loops in HIV-1 RNA for the nucleocapsid protein

Michael F. Shubsda; Andrew C. Paoletti; Bruce S. Hudson; Philip N. Borer

To design anti-nucleocapsid drugs, it is useful to know the affinities the protein has for its natural substrates under physiological conditions. Dissociation equilibrium constants are reported for seven RNA stem-loops bound to the mature HIV-1 nucleocapsid protein, NCp7. The loops include SL1, SL2, SL3, and SL4 from the major packaging domain of genomic RNA. The binding assay is based on quenching the fluorescence of tryptophan-37 in the protein by G residues in the single-stranded loops. Tightly bound RNA molecules quench nearly all the fluorescence of freshly purified NCp7 in 0.2 M NaCl. In contrast, when the GGAG-tetraloop of tight-binding SL3 is replaced with UUCG or GAUA, quenching is almost nil, indicating very low affinity. Interpreting fluorescence titrations in terms of a rapidly equilibrating 1:1 complex explains nearly all of the experimental variance for the loops. Analyzed in this way, the highest affinities are for 20mer SL3 and 19mer SL2 hairpin constructs (K(d) = 28 +/- 3 and 23 +/- 2 nM, respectively). The 20mer stem-UUCG-loop and GAUA-loop constructs have <0.5% of the affinity for NCp7 relative to SL3. Affinities relative to SL3 for the other stem-loops are the following: 10% for a 16mer construct to model SL4, 30% for a 27mer model of the 9-residue apical loop of SL1, and 20% for a 23mer model of a 1 x 3 asymmetric internal loop in SL1. A 154mer construct that includes all four stem-loops binds tightly to NCp7, with the equivalent of three NCp7 molecules bound with high affinity per RNA; it is also possible that two strong sites and several weaker ones combine to give the appearance of three strong sites.


Journal of the American Chemical Society | 2012

Engineering a Rigid Protein Tunnel for Biomolecular Detection

Mohammad M. Mohammad; Raghuvaran Iyer; Khalil R. Howard; Mark P. McPike; Philip N. Borer; Liviu Movileanu

One intimidating challenge in protein nanopore-based technologies is designing robust protein scaffolds that remain functionally intact under a broad spectrum of detection conditions. Here, we show that an extensively engineered bacterial ferric hydroxamate uptake component A (FhuA), a β-barrel membrane protein, functions as a robust protein tunnel for the sampling of biomolecular events. The key implementation in this work was the coupling of direct genetic engineering with a refolding approach to produce an unusually stable protein nanopore. More importantly, this nanostructure maintained its stability under many experimental circumstances, some of which, including low ion concentration and highly acidic aqueous phase, are normally employed to gate, destabilize, or unfold β-barrel membrane proteins. To demonstrate these advantageous traits, we show that the engineered FhuA-based protein nanopore functioned as a sensing element for examining the proteolytic activity of an enzyme at highly acidic pH and for determining the kinetics of protein-DNA aptamer interactions at physiological salt concentration.


ACS Nano | 2013

Sampling a biomarker of the human immunodeficiency virus across a synthetic nanopore

David J. Niedzwiecki; Raghuvaran Iyer; Philip N. Borer; Liviu Movileanu

One primary goal in nanobiotechnology is designing new methodologies for molecular biomedical diagnosis at stages much earlier than currently possible and without use of expensive reagents and sophisticated equipment. In this work, we show the proof of principle for single-molecule detection of the nucleocapsid protein 7 (NCp7), a protein biomarker of the HIV-1 virus, using synthetic nanopores and the resistive-pulse technique. The biosensing mechanism relied upon specific interactions between NCp7 and aptamers of stem-loop 3 (SL3) in the packaging domain of the retroviral RNA genome. One critical step of this study was the choice of the optimal size of the nanopores for accurate, label-free determinations of the dissociation constant of the NCp7 protein-SL3 RNA aptamer complex. Therefore, we systematically investigated the NCp7 protein-SL3 RNA aptamer complex employing two categories of nanopores in a silicon nitride membrane: (i) small, whose internal diameter was smaller than 6 nm, and (ii) large, whose internal diameter was in the range of 7 to 15 nm. Here, we demonstrate that only the use of nanopores with an internal diameter that is smaller than or comparable with the largest cross-sectional size of the NCp7-SL3 aptamer complex enables accurate measurement of the dissociation constant between the two interacting partners. Notably, this determination can be accomplished without the need for prior nanopore functionalization. Moreover, using small solid-state nanopores, we demonstrate the ability to detect drug candidates that inhibit the binding interactions between NCp7 and SL3 RNA by using a test case of N-ethylmaleimide.


PLOS ONE | 2011

Acyclic Identification of Aptamers for Human alpha-Thrombin Using Over-Represented Libraries and Deep Sequencing

Gillian V. Kupakuwana; James E. Crill; Mark P. McPike; Philip N. Borer

Background Aptamers are oligonucleotides that bind proteins and other targets with high affinity and selectivity. Twenty years ago elements of natural selection were adapted to in vitro selection in order to distinguish aptamers among randomized sequence libraries. The primary bottleneck in traditional aptamer discovery is multiple cycles of in vitro evolution. Methodology/Principal Findings We show that over-representation of sequences in aptamer libraries and deep sequencing enables acyclic identification of aptamers. We demonstrated this by isolating a known family of aptamers for human α-thrombin. Aptamers were found within a library containing an average of 56,000 copies of each possible randomized 15mer segment. The high affinity sequences were counted many times above the background in 2–6 million reads. Clustering analysis of sequences with more than 10 counts distinguished two sequence motifs with candidates at high abundance. Motif I contained the previously observed consensus 15mer, Thb1 (46,000 counts), and related variants with mostly G/T substitutions; secondary analysis showed that affinity for thrombin correlated with abundance (Kd = 12 nM for Thb1). The signal-to-noise ratio for this experiment was roughly 10,000∶1 for Thb1. Motif II was unrelated to Thb1 with the leading candidate (29,000 counts) being a novel aptamer against hexose sugars in the storage and elution buffers for Concanavilin A (Kd = 0.5 µM for α-methyl-mannoside); ConA was used to immobilize α-thrombin. Conclusions/Significance Over-representation together with deep sequencing can dramatically shorten the discovery process, distinguish aptamers having a wide range of affinity for the target, allow an exhaustive search of the sequence space within a simplified library, reduce the quantity of the target required, eliminate cycling artifacts, and should allow multiplexing of sequencing experiments and targets.


Progress in Nucleic Acid Research and Molecular Biology | 1983

Nearest-Neighbor Effects in the Structure and Function of Nucleic Acids

Edward Bubienko; Phillip Cruz; J.F. Thomason; Philip N. Borer

Publisher Summary This article examines the hypothesis, called the RY model, that these extended stacks occur in the special arrangements of purines (R) and pyrimidines (Y) along the chains. The RY model comes from the measurements of the nuclear magnetic resonance (nmr) chemical shifts in oligoribonucleotide and finds some support in X-ray diffraction studies. The model will evolve into a more comprehensive picture when the nearest-neighbor effects are characterized more thoroughly by further experiments. The purpose is to stimulate the molecular biologists to think beyond sequence, to consider the arrangement of nearest neighbors. It is largely these neighbor interactions that determine the local three dimensional shape imparted by the sequence. The A-form may represent the conformation of DNA in its actively expressed form. B-DNA may be a form useful for storage rather than expression of genetic content, although enzymes may also use its special plasticity in “induced-fit’’ interactions. The left-handed Z-form exists only in specific sequences and is in a delicate balance with the right-handed B-form, easily shifted by solution conditions. Z-DNA may be especially important in regulating torsional stress in supercoiled DNA.


Journal of Biomolecular Structure & Dynamics | 1984

Conformation and Dynamics of Short DNA Duplexes: (dC-dG)3 and (dC-dG)4

Philip N. Borer; Nilo Zanatta; Tadeusz A. Holak; George C. Levy; Jacques H. van Boom; Andrew H.-J. Wang

Natural abundance 13C NMR spectra of duplexed (dC-dG)3 and (dC-dG)4 exhibit resolved resonances for most of the carbons at 0.1M NaCl in aqueous solution. Large transitions in chemical shift for many of the hexamer carbons (up to 1.8 ppm) are observed in variable temperature measurements. Determination of spin-lattice relaxation times and nuclear Overhauser enhancements in 0.1M NaCl indicate that the duplexes tumble almost isotropically, with overall correlation times near 5 nsec; the sugar carbons experience more rapid local motions than do the base carbons. The relaxation data are also consistent with the most rapid local motions occurring at the chain-terminal residues, especially in the Cyd(1) sugar. 4M NaCl causes changes in the 13C chemical shifts of most of the guanine base carbons, and rearrangements in the deoxyribose carbon shifts; this is consistent with changes predicted by a salt-induced B to Z transition, viz. conversion of the guanylates from the anti to syn range about the glycosyl bond, and from the S to N pseudorotational state of the deoxyribose ring.


Biochemistry | 2010

Effects of the nature and concentration of salt on the interaction of the HIV-1 nucleocapsid protein with SL3 RNA.

Shreyas S. Athavale; Wei Ouyang; Mark P. McPike; Bruce S. Hudson; Philip N. Borer

The mature nucleocapsid protein of HIV-1, NCp7, and the NC domains in gag precursors are attractive targets for anti-AIDS drug discovery. The stability of the 1:1 complex of NCp7 with a 20mer mimic of stem-loop 3 RNA (SL3, also called psi-RNA, in the packaging domain of genomic RNA) is strongly affected by changes in ionic strength. NC domains recognize and specifically package genomic HIV-1 RNA, while electrostatic attractions and high concentrations of protein and RNA drive NCp7 to completely coat the RNA in the mature virion. The specific interactions of NCp7 binding to loop bases of SL3 produce 1:1 complexes in solutions that have a NaCl concentration of >or=0.2 M, while the electrostatic interactions can dominate at <or=0.15 M NaCl, leading to complexes that have a mainly 1:2 RNA:protein ratio. Persistent, nonequilibrium mixtures of 1:1 and protein-excess complexes can exist at these lower salt concentrations, where the distribution of complexes depends on the order of addition of RNA and protein. Adding salt causes rapid rearrangement of metastable multiprotein complexes to a 1:1 ratio. The stability of complexes is also affected by the nature of the added salt, with 0.018 M MgCl(2) and added 0.200 M NaCl producing the same K(d) (21 +/- 2 nM); acetate ion stabilizes the 1:1 complex by a factor of more than 2 compared to the same concentration of chloride ion. Maintaining a salt concentration of 0.2 M NaCl or 18 mM MgCl(2) is sufficient for experiments to distinguish drug candidates that disrupt the specific SL3-NCp7 interactions in the 1:1 complex.


Biochemical and Biophysical Research Communications | 1986

NMR studies of flexible opiate conformations at monoclonal antibody binding sites I. transferred nuclear overhauser effects show bound conformations

Jay A. Glasel; Philip N. Borer

500 MHz H, homonuclear, intra-molecular, transferred Nuclear Overhauser Effect measurements have been performed on the bound forms of a classical opiate antagonist, nalorphine and an agonist, levorphanol at their respective binding sites in two different specific anti-opiate monoclonal antibody fragments. Based upon previous studies of opiate conformations in solution the results clearly show without extensive interpretation that one of these flexible haptens has the opposite (from solution) isomeric conformation in its bound form. For nalorphine the axial isomer of the N-allyl substituent is the bound form whereas in solution the equatorial isomer dominates at a ratio of 5:1. For levorphanol the bound form is that of equatorial N-methyl in accord with the low energy conformation in solution. In this preliminary report we discuss the initial measurements and results and their implications with respect to the conformations of flexible ligands at macromolecular binding sites including opiate receptors.

Collaboration


Dive into the Philip N. Borer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl D. Bishop

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge