Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip N. Patsalos is active.

Publication


Featured researches published by Philip N. Patsalos.


Epilepsia | 2008

Antiepileptic drugs—best practice guidelines for therapeutic drug monitoring: A position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies

Philip N. Patsalos; David J. Berry; Blaise F. D. Bourgeois; James C. Cloyd; Tracy A. Glauser; Svein I. Johannessen; Ilo E. Leppik; Torbjörn Tomson; Emilio Perucca

Although no randomized studies have demonstrated a positive impact of therapeutic drug monitoring (TDM) on clinical outcome in epilepsy, evidence from nonrandomized studies and everyday clinical experience does indicate that measuring serum concentrations of old and new generation antiepileptic drugs (AEDs) can have a valuable role in guiding patient management provided that concentrations are measured with a clear indication and are interpreted critically, taking into account the whole clinical context. Situations in which AED measurements are most likely to be of benefit include (1) when a person has attained the desired clinical outcome, to establish an individual therapeutic concentration which can be used at subsequent times to assess potential causes for a change in drug response; (2) as an aid in the diagnosis of clinical toxicity; (3) to assess compliance, particularly in patients with uncontrolled seizures or breakthrough seizures; (4) to guide dosage adjustment in situations associated with increased pharmacokinetic variability (e.g., children, the elderly, patients with associated diseases, drug formulation changes); (5) when a potentially important pharmacokinetic change is anticipated (e.g., in pregnancy, or when an interacting drug is added or removed); (6) to guide dose adjustments for AEDs with dose‐dependent pharmacokinetics, particularly phenytoin.


Epilepsia | 2002

The Importance of Drug Interactions in Epilepsy Therapy

Philip N. Patsalos; Walter Fröscher; Francesco Pisani; Clementina M. van Rijn

Summary: Long‐term antiepileptic drug (AED) therapy is the reality for the majority of patients diagnosed with epilepsy. One AED will usually be sufficient to control seizures effectively, but a significant proportion of patients will need to receive a multiple AED regimen. Furthermore, polytherapy may be necessary for the treatment of concomitant disease. The fact that over‐the‐counter drugs and nutritional supplements are increasingly being self‐administered by patients also must be considered. Therefore the probability of patients with epilepsy experiencing drug interactions is high, particularly with the traditional AEDs, which are highly prone to drug interactions. Physicians prescribing AEDs to patients with epilepsy must, therefore, be aware of the potential for drug interactions and the effects (pharmacokinetic and pharmacodynamic) that can occur both during combination therapy and on drug discontinuation. Although pharmacokinetic interactions are numerous and well described, pharmacodynamic interactions are few and usually concluded by default. Perhaps the most clinically significant pharmacodynamic interaction is that of lamotrigine (LTG) and valproic acid (VPA); these drugs exhibit synergistic efficacy when coadministered in patients with refractory partial and generalised seizures. Hepatic metabolism is often the target for pharmacokinetic drug interactions, and enzyme‐inducing drugs such as phenytoin (PHT), phenobarbitone (PB), and carbamazepine (CBZ) will readily enhance the metabolism of other AEDs [e.g., LTG, topiramate (TPM), and tiagabine (TGB)]. The enzyme‐inducing AEDs also enhance the metabolism of many other drugs (e.g., oral contraceptives, antidepressants, and warfarin) so that therapeutic efficacy of coadministered drugs is lost unless the dosage is increased. VPA inhibits the metabolism of PB and LTG, resulting in an elevation in the plasma concentrations of the inhibited drugs and consequently an increased risk of toxicity. The inhibition of the metabolism of CBZ by VPA results in an elevation of the metabolite CBZ‐epoxide, which also increases the risk of toxicity. Other examples include the inhibition of PHT and CBZ metabolism by cimetidine and CBZ metabolism by erythromycin. In recent years, a more rational approach has been taken with regard to metabolic drug interactions because of our enhanced understanding of the cytochrome P450 system that is responsible for the metabolism of many drugs, including AEDs. The review briefly discusses the mechanisms of drug interactions and then proceeds to highlight some of the more clinically relevant drug interactions between AEDs and between AEDs and non‐AEDs. Understanding the fundamental principles that contribute to a drug interaction may help the physician to better anticipate a drug interaction and allow a graded and planned therapeutic response and, therefore, help to enhance the management of patients with epilepsy who may require treatment with polytherapy regimens.


Lancet Neurology | 2003

Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs

Philip N. Patsalos; Emilio Perucca

There are two types of interactions between drugs, pharmacokinetic and pharmacodynamic. For antiepileptic drugs (AEDs), pharmacokinetic interactions are the most notable type, but pharmacodynamic interactions involving reciprocal potentiation of pharmacological effects at the site of action are also important. By far the most important pharmacokinetic interactions are those involving cytochrome P450 isoenzymes in hepatic metabolism. Among old generation AEDs, carbamazepine, phenytoin, phenobarbital, and primidone induce the activity of several enzymes involved in drug metabolism, leading to decreased plasma concentration and reduced pharmacological effect of drugs, which are substrates of the same enzymes (eg, tiagabine, valproic acid, lamotrigine, and topiramate). In contrast, the new AEDs gabapentin, lamotrigine, levetiracetam, tiagabine, topiramate, vigabatrin, and zonisamide do not induce the metabolism of other AEDs. Interactions involving enzyme inhibition include the increase in plasma concentrations of lamotrigine and phenobarbital caused by valproic acid. Among AEDs, the least potential interaction is associated with gabapentin and levetiracetam.


Lancet Neurology | 2003

Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs

Philip N. Patsalos; Emilio Perucca

Antiepileptic drugs (AEDs) are commonly prescribed for long periods, up to a lifetime, and many patients will require treatment with other agents for the management of concomitant or intercurrent conditions. When two or more drugs are prescribed together, clinically important interactions can occur. Among old-generation AEDs, carbamazepine, phenytoin, phenobarbital, and primidone are potent inducers of hepatic enzymes, and decrease the plasma concentration of many psychotropic, immunosuppressant, antineoplastic, antimicrobial, and cardiovascular drugs, as well as oral contraceptive steroids. Most new generation AEDs do not have clinically important enzyme inducing effects. Other drugs can affect the pharmacokinetics of AEDs; examples include the stimulation of lamotrigine metabolism by oral contraceptive steroids and the inhibition of carbamazepine metabolism by certain macrolide antibiotics, antifungals, verapamil, diltiazem, and isoniazid. Careful monitoring of clinical response is recommended whenever a drug is added or removed from a patients AED regimen.


Epilepsia | 2000

Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed

C.L.P. Deckers; Stanisław J. Czuczwar; Y.A. Hekster; A.J.M. Keyser; Hana Kubová; Harry Meinardi; Philip N. Patsalos; W.O. Renier; C.M. van Rijn

Summary: Purpose: When monotherapy with antiepileptic drugs (AEDs) fails, combination therapy is tried in an attempt to improve effectiveness by improving efficacy, tolerability, or both. We reviewed the available studies (both animal and human) on AED polytherapy to determine whether AEDs can be selected for combination therapy based on their mechanisms of action, and if so, which combinations are associated with increased effectiveness. Because various designs and methods of analysis were used in these studies, it was also necessary to evaluate the appropriateness of these approaches.


Clinical Pharmacokinectics | 2004

Clinical Pharmacokinetics of Levetiracetam

Philip N. Patsalos

Since 1989, eight new antiepileptic drugs (AEDs) have been licensed for clinical use. Levetiracetam is the latest to be licensed and is used as adjunctive therapy for the treatment of adult patients with partial seizures with or without secondary generalisation that are refractory to other established first-line AEDs.Pharmacokinetic studies of levetiracetam have been conducted in healthy volunteers, in adults, children and elderly patients with epilepsy, and in patients with renal and hepatic impairment. After oral ingestion, levetiracetam is rapidly absorbed, with peak concentration occurring after 1.3 hours, and its bioavailability is ≥95%. Co-ingestion of food slows the rate but not the extent of absorption. Levetiracetam is not bound to plasma proteins and has a volume of distribution of 00.5–0.7 L/kg. Plasma concentrations increase in proportion to dose over the clinically relevant dose range (500–5000mg) and there is no evidence of accumulation during multiple administration. Steady-state blood concentrations are achieved within 24–48 hours.The elimination half-life in adult volunteers, adults with epilepsy, children with epilepsy and elderly volunteers is 6–8, 6–8, 5–7 and 10–11 hours, respectively. Approximately 34% of a levetiracetam dose is metabolised and 66% is excreted in urine unmetabolised; however, the metabolism is not hepatic but occurs primarily in blood by hydrolysis. Autoinduction is not a feature. As clearance is renal in nature it is directly dependent on creatinine clearance. Consequently, dosage adjustments are necessary for patients with moderate to severe renal impairment.To date, no clinically relevant pharmacokinetic interactions between AEDs and levetiracetam have been identified. Similarly, levetiracetam does not interact with digoxin, warfarin and the low-dose contraceptive pill; however, adverse pharmacodynamic interactions with carbamazepine and topiramate have been demonstrated. Overall, the pharmacokinetic characteristics of levetiracetam are highly favourable and make its clinical use simple and straightforward.


CNS Drugs | 2001

The new generation of GABA enhancers. Potential in the treatment of epilepsy.

Stanisław J. Czuczwar; Philip N. Patsalos

Abstractγ-Aminobutyric acid (GABA) is considered to be the major inhibitory neurotransmitter in the brain and loss of GABA inhibition has been clearly implicated in epileptogenesis. GABA interacts with 3 types of receptor: GAB Aa, GAB Ab and GABAc. The GABAA receptor has provided an excellent target for the development of drugs with an anticonvulsant action. Some clinically useful anti-convulsants, such as the benzodiazepines and barbiturates and possibly valproic acid (sodium valproate), act at this receptor.In recent years 4 new anticonvulsants, namely vigabatrin, tiagabine, gaba-pentin and topiramate, with a mechanism of action considered to be primarily via an effect on GABA, have been licensed. Vigabatrin elevates brain GABA levels by inhibiting the enzyme GABA transaminase which is responsible for intracellular GABA catabolism. In contrast, tiagabine elevates synaptic GABA levels by inhibiting the GABA uptake transporter, GAT1, and preventing the uptake of GABA into neurons and glia. Gabapentin, a cyclic analogue of GABA, acts by enhancing GABA synthesis and also by decreasing neuronal calcium influx via a specific subunit of voltage-dependent calcium channels. Topiramate acts, in part, via an action on a novel site of the GABAA receptor. Although these drugs are useful in some patients, overall, they have proven to be disappointing as they have had little impact on the prognosis of patients with intractable epilepsy.Despite this, additional GABA enhancing anticonvulsants are presently under development. Ganaxolone, retigabine and pregabalin may prove to have a more advantageous therapeutic profile than the presently licensed GABA enhancing drugs. This anticipation is based on 2 characteristics. First, they act by hitherto unique mechanisms of action in enhancing GABA-induced neuronal inhibition. Secondly, they act on additional antiepileptogenic mechanisms. Finally, CGP 36742, a GABAb receptor antagonist, may prove to be particularly useful in the management of primary generalised absence seizures.The exact impact of these new GABA-enhancing drugs in the treatment of epilepsy will have to await their licensing and a period of postmarketing surveillance. As to clarification of their role in the management of epilepsy, this will have to await further clinical trials, particularly direct comparative trials with other anticonvulsants.


Expert Review of Neurotherapeutics | 2010

Drug interactions involving the new second- and third-generation antiepileptic drugs

Cecilie Johannessen Landmark; Philip N. Patsalos

During the period 1989–2009, 14 new antiepileptic drugs (AEDs) were licensed for clinical use and these can be subdivided into new second- and third-generation AEDs. The second-generation AEDs comprise felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. The third-generation AEDs comprise eslicarbazepine acetate and lacosamide. The interaction propensity of AEDs is very important because all new AEDs are licensed, at least in the first instance, as adjunctive therapy. The present review summarizes the interactions (pharmacokinetic and pharmacodynamic) that have been reported with the newer AEDs. The pharmacokinetic interactions include those relating to protein-binding displacement from albumin in blood, and metabolic inhibitory and induction interactions occurring in the liver. Overall, the newer AEDs are less interacting because their pharmacokinetics are more favorable and many are minimally or not bound to blood albumin (e.g., eslicarbazepine, felbamate, gabapentin, lacosamide levetiracetam, rufinamide, topiramate and vigabatrin) and are primarily renally excreted or metabolized by noncytochrome P450 or uridine glucoronyl transferases (e.g., gabapentin, lacosamide levetiracetam, rufinamide, topiramate and vigabatrin) as opposed to hepatic metabolism which is particularly amenable to interference. Gabapentin, lacosamide, levetiracetam, pregabalin and vigabatrin are essentially not associated with clinically significant pharmacokinetic interactions. Of the new AEDs, lamotrigine and topiramate are the most interacting. Furthermore, the metabolism of lamotrigine is susceptible to both enzyme inhibition and enzyme induction. While the metabolism of felbamate, tiagabine, topiramate and zonisamide can be induced by enzyme-inducing AEDs, they are less vulnerable to inhibition by valproate. Noteworthy is the fact that only five new AEDs (eslicarbazepine, felbamate, oxcarbazepine, rufinamide and topiramate) interact with oral contraceptives and compromise contraception control. The most clinically significant pharmacodynamic interaction is that relating to the synergism of valproate and lamotrigine for complex partial seizures. Compared with the first-generation AEDs, the new second- and third-generation AEDs are less interacting, and this is a desirable development because it allows ease of prescribing by the physician and less complicated therapeutic outcomes and complications for patients.


Epilepsy & Behavior | 2005

Omega-3 fatty acid supplementation in patients with chronic epilepsy: A randomized trial

Alan W.C. Yuen; Josemir W. Sander; Dominique Fluegel; Philip N. Patsalos; Gail S. Bell; Tony Johnson; Matthias J. Koepp

Animal studies and a preliminary clinical observation suggest that nutritional supplementation with long chain omega-3 fatty acids (omega-3 FAs) may be useful in the nonpharmacological treatment of patients with epilepsy. Omega-3 FAs increase seizure thresholds, and lower inflammatory mediators, which are increased in patients with epilepsy. In this first randomized, placebo-controlled parallel group trial of omega-3 FA supplementation with 1 g eicosapentaenoic acid (EPA) and 0.7 g docosahexaenoic acid (DHA) daily, 57 patients completed a 12-week double-blind phase. Seizure frequency was reduced over the first 6 weeks of treatment in the supplement group, but this effect was not sustained. The supplementation produced a significant increase in EPA and DHA concentrations and a reciprocal fall in arachidonic and linoleic acid concentrations. No change in serum AED concentrations was detected. Further studies are required to examine different omega-3 FA preparations, different doses, longer treatment duration, and larger sample sizes.


Journal of Neurochemistry | 2002

Investigation into the role of N-acetylaspartate in cerebral osmoregulation.

Deanna L. Taylor; Siân E. C. Davies; Tihomir P. Obrenovitch; Mary H. Doheny; Philip N. Patsalos; John B. Clark; Lindsay Symon

Abstract: Marked abnormalities of the magnetic resonance intensity of N‐acetylaspartate (NAA) have been reported in patients with various neurological disorders, but the neurochemical consequences of these alterations are difficult to assess because the function of NAA remains speculative. The purpose of this study was to examine whether NAA plays a role in protecting neurons against osmotic stress. Intracerebral microdialysis was used to expose a small region of the rat dorsolateral striatum to an increasingly hyposmotic environment and to measure resulting changes in NAA extracellular concentrations. NAA changes in the extracellular fluid (ECF) were compared with those of the amino acids, in particular, taurine, known to be involved in brain osmoregulation. Stepped increases in cellular hydration produced by hyposmotic perfusion media induced a marked increase in ECF NAA, reflecting a redistribution of NAA from intra‐to extracellular space. Parallel experiments showed that, of all the extracellular amino acids measured, only taurine markedly increased with hyposmolar perfusion medium, indicating that the ECF NAA increase associated with hyposmotic stress was a specific response and not passive leakage out of the cells. As NAA is predominantly neuronal, it may contribute to the protection of neurons against swelling (i.e., regulatory volume decrease). In conditions with impaired blood‐brain barrier and cytotoxic oedema, efflux of intracellular NAA subsequent to sustained cellular swelling might lead to a reduction in total brain NAA detectable by magnetic resonance spectroscopy. Alternatively, redistribution of NAA from intra‐to extracellular space implies changes in its chemical environment that may alter its magnetic resonance visibility.

Collaboration


Dive into the Philip N. Patsalos's collaboration.

Top Co-Authors

Avatar

Neville Ratnaraj

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Josemir W. Sander

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilie Johannessen Landmark

Oslo and Akershus University College of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan W.C. Yuen

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge