Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Newsholme is active.

Publication


Featured researches published by Philip Newsholme.


Nature Immunology | 2010

Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes

Seth L. Masters; Aisling Dunne; Shoba L. Subramanian; Rebecca L. Hull; Gillian M. Tannahill; Fiona A. Sharp; Christine E. Becker; Luigi Franchi; Eiji Yoshihara; Zhe Chen; Niamh Mullooly; Lisa A Mielke; James Harris; Rebecca C. Coll; Kingston H. G. Mills; K. Hun Mok; Philip Newsholme; Gabriel Núñez; Junji Yodoi; Steven E. Kahn; Ed C. Lavelle; Luke A. J. O'Neill

Interleukin 1β (IL-1β) is an important inflammatory mediator of type 2 diabetes. Here we show that oligomers of islet amyloid polypeptide (IAPP), a protein that forms amyloid deposits in the pancreas during type 2 diabetes, triggered the NLRP3 inflammasome and generated mature IL-1β. One therapy for type 2 diabetes, glyburide, suppressed IAPP-mediated IL-1β production in vitro. Processing of IL-1β initiated by IAPP first required priming, a process that involved glucose metabolism and was facilitated by minimally oxidized low-density lipoprotein. Finally, mice transgenic for human IAPP had more IL-1β in pancreatic islets, which localized together with amyloid and macrophages. Our findings identify previously unknown mechanisms in the pathogenesis of type 2 diabetes and treatment of pathology caused by IAPP.


The Journal of Physiology | 2007

Diabetes associated cell stress and dysfunction: role of mitochondrial and non‐mitochondrial ROS production and activity

Philip Newsholme; Esther Haber; Sandro M. Hirabara; E. L. O. Rebelato; Joaquim Procopio; D. Morgan; H. C. Oliveira-Emilio; Angelo R. Carpinelli; Rui Curi

It is now widely accepted, given the current weight of experimental evidence, that reactive oxygen species (ROS) contribute to cell and tissue dysfunction and damage caused by glucolipotoxicity in diabetes. The source of ROS in the insulin secreting pancreatic β‐cells and in the cells which are targets for insulin action has been considered to be the mitochondrial electron transport chain. While this source is undoubtably important, we provide additional information and evidence for NADPH oxidase‐dependent generation of ROS both in pancreatic β‐cells and in insulin sensitive cells. While mitochondrial ROS generation may be important for regulation of mitochondrial uncoupling protein (UCP) activity and thus disruption of cellular energy metabolism, the NADPH oxidase associated ROS may alter parameters of signal transduction, insulin secretion, insulin action and cell proliferation or cell death. Thus NADPH oxidase may be a useful target for intervention strategies based on reversing the negative impact of glucolipotoxicity in diabetes.


Journal of Cellular Physiology | 2005

Molecular Mechanisms of Glutamine Action

Rui Curi; Claudia J. Lagranha; Sonia Q. Doi; Donald F. Sellitti; Joaquim Procopio; Tania Cristina Pithon-Curi; M. Corless; Philip Newsholme

Glutamine is the most abundant free amino acid in the body and is known to play a regulatory role in several cell specific processes including metabolism (e.g., oxidative fuel, gluconeogenic precursor, and lipogenic precursor), cell integrity (apoptosis, cell proliferation), protein synthesis, and degradation, contractile protein mass, redox potential, respiratory burst, insulin resistance, insulin secretion, and extracellular matrix (ECM) synthesis. Glutamine has been shown to regulate the expression of many genes related to metabolism, signal transduction, cell defense and repair, and to activate intracellular signaling pathways. Thus, the function of glutamine goes beyond that of a simple metabolic fuel or protein precursor as previously assumed. In this review, we have attempted to identify some of the common mechanisms underlying the regulation of glutamine dependent cellular functions.


Brazilian Journal of Medical and Biological Research | 2003

Glutamine and glutamate as vital metabolites

Philip Newsholme; Manuela Ramos Lima; Joaquim Procopio; Tania Cristina Pithon-Curi; Sonia Q. Doi; Roberto Barbosa Bazotte; Rui Curi

Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.


Lipids | 2000

Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function

D. A. Healy; Fiona A. Wallace; Elizabeth A. Miles; P. C. Calder; Philip Newsholme

Although essential to host defense, neutrophils are also involved in numerous inflammatory disorders including rheumatoid arthritis. Dietary supplementation with relatively large amounts of fish oil [containing >2.6 g eicosapentaenoic acid (EPA) plus 1.4 g docosahexaenoic acid (DHA) per day] can attenuate neutrophil functions such as chemotaxis and superoxide radical production. In this study, the effects of more moderate supplementation with fish oil on neutrophil lipid composition and function were investigated. The rationale for using lower supplementary doses of fish oil was to avoid adverse gastrointestinal problems, which have been observed at high supplementary concentrations of fish oil. Healthy male volunteers aged <40 yr were randomly assigned to consume one of six dietary supplements daily for 12 wk (n=8 per treatment group). The dietary supplements included four different concentrations of fish oil (the most concentrated fish oil provided 0.58 g EPA plus 1.67 g DHA per day), linseed oil, and a placebo oil. The percentages of EPA and DHA increased (both P<0.05) in neutrophil phospholipids in a dose-dependent manner after 4 wk of supplementation with the three most concentrated fish oil supplements. No further increases in EPA or DHA levels were observed after 4 wk. The percentage of arachidonic acid in neutrophil phospholipids decreased (P<0.05) after 12 wk supplementation with the linseed oil supplement or the two most concentrated fish oil supplements. There were no significant changes in N-formyl-met-leu-phe-induced chemotaxis and superoxide radical production following the dietary supplementations. In conclusion, low-to-moderate amounts of dietary fish oil can be used to manipulate neutrophil fatty acid composition. However, this may not be accompanied by modulation of neutrophil functions such as chemotaxis and superoxide radical production.


Clinical Science | 2005

New insights into amino acid metabolism, β-cell function and diabetes

Philip Newsholme; Lorraine Brennan; Blanca Rubi; Pierre Maechler

Specific amino acids are now known to acutely and chronically regulate insulin secretion from pancreatic beta-cells in vivo and in vitro. Understanding the molecular mechanisms by which amino acids regulate insulin secretion may identify novel targets for future diabetes therapies. Mitochondrial metabolism is crucial for the coupling of amino acid and glucose recognition to the exocytosis of the insulin granules. This is illustrated by in vitro and in vivo observations discussed in the present review. Mitochondria generate ATP, which is the main coupling factor in insulin secretion; however, the subsequent Ca2+ signal in the cytosol is necessary, but not sufficient, for full development of sustained insulin secretion. Hence mitochondria generate ATP and other coupling factors serving as fuel sensors for the control of the exocytotic process. Numerous studies have sought to identify the factors that mediate the amplifying pathway over the Ca2+ signal in nutrient-stimulated insulin secretion. Predominantly, these factors are nucleotides (GTP, ATP, cAMP and NADPH), although metabolites have also been proposed, such as long-chain acyl-CoA derivatives and the key amino acid glutamate. This scenario highlights further the importance of the key enzymes or transporters, glutamate dehydrogenase, the aspartate and alanine aminotransferases and the malate/aspartate shuttle, in the control of insulin secretion. Therefore amino acids may play a direct or indirect (via generation of putative messengers of mitochondrial origin) role in insulin secretion.


Mediators of Inflammation | 2015

Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer’s Disease

Giuseppe Verdile; Kevin N. Keane; Vinicius Fernandes Cruzat; Sandra Medic; Miheer Sabale; Joanne Rowles; Nadeeja Wijesekara; Ralph N. Martins; Paul E. Fraser; Philip Newsholme

Type 2 diabetes (T2DM), Alzheimers disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimers disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2DM and AD.


Clinical Science | 2007

Life and death decisions of the pancreatic β-cell: the role of fatty acids

Philip Newsholme; Deirdre Keane; Hannah J. Welters; Noel G. Morgan

Both stimulatory and detrimental effects of NEFAs (non-esterified fatty acids) on pancreatic β-cells have been recognized. Acute exposure of the pancreatic β-cell to high glucose concentrations and/or saturated NEFAs results in a substantial increase in insulin release, whereas chronic exposure results in desensitization and suppression of secretion, followed by induction of apoptosis. Some unsaturated NEFAs also promote insulin release acutely, but they are less toxic to β-cells during chronic exposure and can even exert positive protective effects. Therefore changes in the levels of NEFAs are likely to be important for the regulation of β-cell function and viability under physiological conditions. In addition, the switching between endogenous fatty acid synthesis or oxidation in the β-cell, together with alterations in neutral lipid accumulation, may have critical implications for β-cell function and integrity. Long-chain acyl-CoA (formed from either endogenously synthesized or exogenous fatty acids) controls several aspects of β-cell function, including activation of specific isoenzymes of PKC (protein kinase C), modulation of ion channels, protein acylation, ceramide formation and/or NO-mediated apoptosis, and transcription factor activity. In this review, we describe the effects of exogenous and endogenous fatty acids on β-cell metabolism and gene and protein expression, and have explored the outcomes with respect to insulin secretion and β-cell integrity.


Journal of Nutritional Biochemistry | 1999

Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease.

Philip Newsholme; Rui Curi; T.C. Pithon Curi; C.J. Murphy; Camila Carrião Machado Garcia; M. Pires de Melo

Many aspects of the cell biology of lymphocytes, macrophages, and neutrophils have been studied extensively. Our recent work on these cells has investigated how fuel metabolism, especially glutamine metabolism, is related to the specific function of these cells in the inflammatory response. The high rate of glutamine utilization and its metabolism in such immune cells has raised the question of why glutamine is responsible for these functions. The macrophage has access to a variety of metabolic fuels both in vivo and in vitro. The quantitatively important role of glutamine in the processes of free radical and cytokine production has been established in our laboratories. Our current understanding of the rate of utilization and the pathway of metabolism of glutamine by cells of the immune system raises some intriguing questions concerning therapeutic manipulation of utilization of this amino acid, specifically the phagocytic and secretory capacities of cells of the defense system can be beneficially altered.


Diabetologia | 2009

Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell

Philip Newsholme; D. Morgan; E. Rebelato; H. Oliveira-Emilio; Joaquim Procopio; Rui Curi; Angelo R. Carpinelli

It is now widely accepted that reactive oxygen species (ROS) contribute to cell and tissue dysfunction and damage in diabetes. The source of ROS in the insulin secreting pancreatic beta cells has traditionally been considered to be the mitochondrial electron transport chain. While this source is undoubtedly important, we fully describe in this article recent information and evidence of NADPH oxidase-dependent generation of ROS in pancreatic beta cells and identify the various isoforms that contribute to O2•− and H2O2 production in various conditions. While glucose-stimulated ROS generation may be important for acute regulation of insulin secretion, at higher levels ROS may disrupt mitochondrial energy metabolism. However, ROS may alter other cellular processes such as signal transduction, ion fluxes and/or cell proliferation/death. The various beta cell isoforms of NADPH oxidase (described in this review) may, via differences in the kinetics and species of ROS generated, positively and negatively regulate insulin secretion and cell survival.

Collaboration


Dive into the Philip Newsholme's collaboration.

Top Co-Authors

Avatar

Rui Curi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauricio Krause

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge