Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Owens is active.

Publication


Featured researches published by Philip Owens.


Proceedings of the National Academy of Sciences of the United States of America | 2008

IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation

Pascal Descargues; Alok K. Sil; Yuji Sano; Olexandr Korchynskyi; Gangwen Han; Philip Owens; Xiao-Jing Wang; Michael Karin

Cell-cycle exit and differentiation of suprabasal epidermal keratinocytes require nuclear IκB kinase α (IKKα), but not its protein kinase activity. IKKα also is a suppressor of squamous cell carcinoma (SCC), but its mode of action remains elusive. Postulating that IKKα may serve as a transcriptional regulator in keratinocytes, we searched for cell-cycle-related genes that could illuminate this function. IKKα was found to control several Myc antagonists, including Mad1, Mad2, and Ovol1, through the association with TGFβ-regulated Smad2/3 transcription factors and is required for Smad3 recruitment to at least one of these targets. Surprisingly, Smad2/3-dependent Mad1 induction and keratinocyte differentiation are independent of Smad4, the almost universal coregulator of canonical TGFβ signaling. IKKα also is needed for nuclear accumulation of activated Smad2/3 in the epidermis, and Smad2/3 are required for epidermal differentiation. We suggest that a TGFβ–Smad2/3–IKKα axis is a critical Smad4-independent regulator of keratinocyte proliferation and differentiation.


Cancer Research | 2013

Stromally Derived Lysyl Oxidase Promotes Metastasis of Transforming Growth Factor-β–Deficient Mouse Mammary Carcinomas

Michael W. Pickup; Hanane Laklai; Irene Acerbi; Philip Owens; Agnieszka E. Gorska; Anna Chytil; Mary Aakre; Valerie M. Weaver; Harold L. Moses

The tumor stromal environment can dictate many aspects of tumor progression. A complete understanding of factors driving stromal activation and their role in tumor metastasis is critical to furthering research with the goal of therapeutic intervention. Polyoma middle T-induced mammary carcinomas lacking the type II TGF-β receptor (PyMT(mgko)) are highly metastatic compared with control PyMT-induced carcinomas (PyMT(fl/fl)). We hypothesized that the PyMT(mgko)-activated stroma interacts with carcinoma cells to promote invasion and metastasis. We show that the extracellular matrix associated with PyMT(mgko) tumors is stiffer and has more fibrillar collagen and increased expression of the collagen crosslinking enzyme lysyl oxidase (LOX) compared with PyMT(fl/fl) mammary carcinomas. Inhibition of LOX activity in PyMT(mgko) mice had no effect on tumor latency and size, but significantly decreased tumor metastasis through inhibition of tumor cell intravasation. This phenotype was associated with a decrease in keratin 14-positive myoepithelial cells in PyMT(mgko) tumors following LOX inhibition as well as a decrease in focal adhesion formation. Interestingly, the primary source of LOX was found to be activated fibroblasts. LOX expression in these fibroblasts can be driven by myeloid cell-derived TGF-β, which is significantly linked to human breast cancer. Overall, stromal expansion in PyMT(mgko) tumors is likely caused through the modulation of immune cell infiltrates to promote fibroblast activation. This feeds back to the epithelium to promote metastasis by modulating phenotypic characteristics of basal cells. Our data indicate that epithelial induction of microenvironmental changes can play a significant role in tumorigenesis and attenuating these changes can inhibit metastasis. Cancer Res; 73(17); 5336-46. ©2013 AACR.


Cancer Discovery | 2011

TGF-β Receptor II Loss Promotes Mammary Carcinoma Progression by Th17 Dependent Mechanisms

Sergey V. Novitskiy; Michael W. Pickup; Agnieszka E. Gorska; Philip Owens; Anna Chytil; Mary Aakre; Huiyun Wu; Yu Shyr; Harold L. Moses

We report that IL-17 significantly increases the secretion of CXCL1 and CXCL5 from mammary carcinoma cells, which is downregulated by TGF-β through the type II TGF-β receptor (TβRII). Carcinoma cells with conditional knockout of TβRII (Tgfbr2(KO)) have enhanced sensitivity to IL-17a in the stimulation of chemokine secretion. During polyoma middle T (PyMT) induced tumor progression, levels of Th17 inducing cytokines TGF-β, IL-6, IL-23 were increased in PyMT/Tgfbr2(KO) tumors, which was associated with an increased number of Th17 cells. IL-17 increased the suppressive function of MDSCs on T cells through the upregulation of Arg, IDO, and COX2. Treatment of PyMT/Tgfbr2(KO) mice with anti-IL-17 Ab decreased carcinoma growth and metastatic burden. Analysis of human breast cancer transcriptome databases showed a strong association between IL-17 gene expression and poor outcome in lymph node positive, estrogen receptor negative or luminal B subtypes suggesting potential therapeutic approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators

Philip Owens; Michael W. Pickup; Sergey V. Novitskiy; Anna Chytil; Agnieszka E. Gorska; Mary Aakre; James West; Harold L. Moses

Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily of signaling molecules. BMPs can elicit a wide range of effects in many cell types and have previously been shown to induce growth inhibition in carcinoma cells as well as normal epithelia. Recently, it has been demonstrated that BMP4 and BMP7 are overexpressed in human breast cancers and may have tumor suppressive and promoting effects. We sought to determine whether disruption of the BMP receptor 2 (BMPR2) would alter mammary tumor progression in mice that express the Polyoma middle T antigen. Mice expressing Polyoma middle T antigen under the mouse mammary tumor virus promoter were combined with mice that have doxycycline-inducible expression of a dominant-negative (DN) BMPR2. We did not observe any differences in tumor latency. However, mice expressing the BMPR2-DN had a fivefold increase in lung metastases. We characterized several cell autonomous changes and found that BMPR2-DN–expressing tumor cells had higher rates of proliferation. We also identified unique changes in inflammatory cells and secreted chemokines/cytokines that accompanied BMPR2-DN–expressing tumors. By immunohistochemistry, it was found that BMPR2-DN primary tumors and metastases had an altered reactive stroma, indicating specific changes in the tumor microenvironment. Among the changes we discovered were increased myeloid derived suppressor cells and the chemokine CCL9. BMP was shown to directly regulate CCL9 expression. We conclude that BMPR2 has tumor-suppressive function in mammary epithelia and microenvironment and that disruption can accelerate mammary carcinoma metastases.


Journal of Clinical Investigation | 2014

Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution

Jamie C. Stanford; Christian D. Young; Donna Hicks; Philip Owens; Andrew H. Williams; David B. Vaught; Meghan M. Morrison; Jiyeon Lim; Michelle A. Williams; Dana M. Brantley-Sieders; Justin M. Balko; Debra Tonetti; H. Shelton Earp; Rebecca S. Cook

Breast cancers that occur in women 2-5 years postpartum are more frequently diagnosed at metastatic stages and correlate with poorer outcomes compared with breast cancers diagnosed in young, premenopausal women. The molecular mechanisms underlying the malignant severity associated with postpartum breast cancers (ppBCs) are unclear but relate to stromal wound-healing events during postpartum involution, a dynamic process characterized by widespread cell death in milk-producing mammary epithelial cells (MECs). Using both spontaneous and allografted mammary tumors in fully immune-competent mice, we discovered that postpartum involution increases mammary tumor metastasis. Cell death was widespread, not only occurring in MECs but also in tumor epithelium. Dying tumor cells were cleared through receptor tyrosine kinase MerTK-dependent efferocytosis, which robustly induced the transcription of genes encoding wound-healing cytokines, including IL-4, IL-10, IL-13, and TGF-β. Animals lacking MerTK and animals treated with a MerTK inhibitor exhibited impaired efferocytosis in postpartum tumors, a reduction of M2-like macrophages but no change in total macrophage levels, decreased TGF-β expression, and a reduction of postpartum tumor metastasis that was similar to the metastasis frequencies observed in nulliparous mice. Moreover, TGF-β blockade reduced postpartum tumor metastasis. These data suggest that widespread cell death during postpartum involution triggers efferocytosis-induced wound-healing cytokines in the tumor microenvironment that promote metastatic tumor progression.


Oncogene | 2015

Inhibition of BMP signaling suppresses metastasis in mammary cancer.

Philip Owens; Michael W. Pickup; Sergey V. Novitskiy; Jennifer M. Giltnane; Agnieszka E. Gorska; Corey R. Hopkins; Charles C. Hong; Harold L. Moses

Bone morphogenetic proteins (BMPs) are secreted cytokines/growth factors that have differing roles in cancer. BMPs are overexpressed in human breast cancers, but loss of BMP signaling in mammary carcinomas can accelerate metastasis. We show that human breast cancers display active BMP signaling, which is rarely downregulated or homozygously deleted. We hypothesized that systemic inhibition of BMP signaling in both the tumor and the surrounding microenvironment could prevent tumor progression and metastasis. To test this hypothesis, we used DMH1, a BMP antagonist, in MMTV.PyVmT expressing mice. Treatment with DMH1 reduced lung metastasis and the tumors were less proliferative and more apoptotic. In the surrounding tumor microenvironment, treatment with DMH1 altered fibroblasts, lymphatic vessels and macrophages to be less tumor promoting. These results indicate that inhibition of BMP signaling may successfully target both the tumor and the surrounding microenvironment to reduce tumor burden and metastasis.


Journal of Leukocyte Biology | 2012

Deletion of TGF-β signaling in myeloid cells enhances their anti-tumorigenic properties.

Sergey V. Novitskiy; Michael W. Pickup; Anna Chytil; Dina Polosukhina; Philip Owens; Harold L. Moses

By crossing LysM‐Cre and TGF‐β type II receptor (Tgfbr2) floxed mice we achieved specific deletion of Tgfbr2 in myeloid cells (Tgfbr2MyeKO mice). S.c.‐injected (LLC, EL4‐OVA) and implanted (MMTV‐PyMT) carcinoma cells grow slower in Tgfbr2MyeKO mice. The number of CD45+ cells in the tumor tissue was the same in both genotypes of mice, but upon analysis, the percentage of T cells (CD45+CD3+) in the KO mice was increased. By flow cytometry analysis, we did not detect any differences in the number and phenotype of TAMs, CD11b+Gr1+, and DCs in Tgfbr2MyeKO compared with Tgfbr2MyeWT mice. ELISA and qRT‐PCR data showed differences in myeloid cell functions. In Tgfbr2MyeKO TAMs, TNF‐α secretion was increased, basal IL‐6 secretion was down‐regulated, TGF‐β did not induce any VEGF response, and there was decreased MMP9 and increased MMP2 and iNOS expression. TGF‐β did not have any effect on CD11b+Gr1+ cells isolated from Tgfbr2MyeKO mice in the regulation of Arg, iNOS, VEGF, and CXCR4, and moreover, these cells have decreased suppressive activity relative to T cell proliferation. Also, we found that DCs from tumor tissue of Tgfbr2MyeKO mice have increased antigen‐presented properties and an enhanced ability to stimulate antigen‐specific T cell proliferation. We conclude that Tgfbr2 in myeloid cells has a negative role in the regulation of anti‐tumorigenic functions of these cells, and deletion of this receptor decreases the suppressive function of CD11b+Gr1+ cells and increases antigen‐presenting properties of DCs and anti‐tumorigenic properties of TAMs.


Journal of Immunology | 2014

Role of TGF-β signaling in generation of CD39+CD73+ myeloid cells in tumors.

Sergey Ryzhov; Michael W. Pickup; Anna Chytil; Agnieszka E. Gorska; Qinkun Zhang; Philip Owens; Igor Feoktistov; Harold L. Moses; Sergey V. Novitskiy

There is growing evidence that generation of adenosine from ATP, which is mediated by the CD39/CD73 enzyme pair, predetermines immunosuppressive and proangiogenic properties of myeloid cells. We have previously shown that the deletion of the TGF-β type II receptor gene (Tgfbr2) expression in myeloid cells is associated with decreased tumor growth, suggesting protumorigenic effect of TGF-β signaling. In this study, we tested the hypothesis that TGF-β drives differentiation of myeloid-derived suppressor cells into protumorigenic terminally differentiated myeloid mononuclear cells (TDMMCs) characterized by high levels of cell-surface CD39/CD73 expression. We found that TDMMCs represent a major cell subpopulation expressing high levels of both CD39 and CD73 in the tumor microenvironment. In tumors isolated from mice with spontaneous tumor formation of mammary gland and conditional deletion of the type II TGF-β receptor in mammary epithelium, an increased level of TGF-β protein was associated with further increase in number of CD39+CD73+ TDMMCs compared with MMTV-PyMT/TGFβRIIWT control tumors with intact TGF-β signaling. Using genetic and pharmacological approaches, we demonstrated that the TGF-β signaling mediates maturation of myeloid-derived suppressor cells into TDMMCs with high levels of cell surface CD39/CD73 expression and adenosine-generating capacity. Disruption of TGF-β signaling in myeloid cells resulted in decreased accumulation of TDMMCs, expressing CD39 and CD73, and was accompanied by increased infiltration of T lymphocytes, reduced density of blood vessels, and diminished progression of both Lewis lung carcinoma and spontaneous mammary carcinomas. We propose that TGF-β signaling can directly induce the generation of CD39+CD73+ TDMMCs, thus contributing to the immunosuppressive, proangiogenic, and tumor-promoting effects of this pleiotropic effector in the tumor microenvironment.


PLOS ONE | 2013

Bone Morphogenetic Proteins Stimulate Mammary Fibroblasts to Promote Mammary Carcinoma Cell Invasion

Philip Owens; Hannah Polikowsky; Michael W. Pickup; Agnieszka E. Gorska; Bojana Jovanovic; Aubie Shaw; Sergey V. Novitskiy; Charles C. Hong; Harold L. Moses

Bone Morphogenetic Proteins (BMPs) are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ) superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs) derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs) were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.


Cancer Letters | 2015

Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth

Laura D. Hover; Christian D. Young; Neil E. Bhola; Andrew J. Wilson; Dineo Khabele; Charles C. Hong; Harold L. Moses; Philip Owens

The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.

Collaboration


Dive into the Philip Owens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura D. Hover

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Justin M. Balko

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge