Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Prinz is active.

Publication


Featured researches published by Philip Prinz.


Frontiers in Neuroscience | 2015

Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients

Philip Prinz; Tobias Hofmann; Anne Ahnis; Ulf Elbelt; Miriam Goebel-Stengel; Burghard F. Klapp; Matthias Rose; Andreas Stengel

Bile acids may be involved in the regulation of food intake and energy metabolism. The aim of the study was to investigate the association of plasma bile acids with body mass index (BMI) and the possible involvement of circulating bile acids in the modulation of physical activity and eating behavior. Blood was obtained in a group of hospitalized patients with normal weight (BMI 18.5–25 kg/m2), underweight (anorexia nervosa, BMI < 17.5 kg/m2) and overweight (obesity with BMI 30–40, 40–50 and >50 kg/m2, n = 14–15/group) and plasma bile acid concentrations assessed. Physical activity and plasma bile acids were measured in a group of patients with anorexia nervosa (BMI 14.6 ± 0.3 kg/m2, n = 43). Lastly, in a population of obese patients (BMI 48.5 ± 0.9 kg/m2, n = 85), psychometric parameters related to disordered eating and plasma bile acids were assessed. Plasma bile acids showed a positive correlation with BMI (r = 0.26, p = 0.03) in the population of patients with broad range of BMI (9–85 kg/m2, n = 74). No associations were observed between plasma bile acids and different parameters of physical activity in anorexic patients (p > 0.05). Plasma bile acids were negatively correlated with cognitive restraint of eating (r = −0.30, p = 0.008), while no associations were observed with other psychometric eating behavior-related parameters (p > 0.05) in obese patients. In conclusion, these data may point toward a role of bile acids in the regulation of body weight. Since plasma bile acids are negatively correlated with the cognitive restraint of eating in obese patients, this may represent a compensatory adaptation to prevent further overeating.


Journal of Neurogastroenterology and Motility | 2017

Control of Food Intake by Gastrointestinal Peptides: Mechanisms of Action and Possible Modulation in the Treatment of Obesity

Philip Prinz; Andreas Stengel

This review focuses on the control of appetite by food intake-regulatory peptides secreted from the gastrointestinal tract, namely cholecystokinin, glucagon-like peptide 1, peptide YY, ghrelin, and the recently discovered nesfatin-1 via the gut-brain axis. Additionally, we describe the impact of external factors such as intake of different nutrients or stress on the secretion of gastrointestinal peptides. Finally, we highlight possible conservative—physical activity and pharmacotherapy—treatment strategies for obesity as well as surgical techniques such as deep brain stimulation and bariatric surgery also altering these peptidergic pathways.


Frontiers in Neuroscience | 2016

Activity-Based Anorexia Reduces Body Weight without Inducing a Separate Food Intake Microstructure or Activity Phenotype in Female Rats—Mediation via an Activation of Distinct Brain Nuclei

Sophie Scharner; Philip Prinz; Miriam Goebel-Stengel; Peter Kobelt; Tobias Hofmann; Matthias Rose; Andreas Stengel

Anorexia nervosa (AN) is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n = 9), activity/ad libitum feeding (activity, AC, n = 9), no activity/restricted feeding (RF, n = 12) and activity/restricted feeding (activity-based anorexia, ABA, n = 11). During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24 h/day. From week two ABA and RF only had access to food from 9:00 to 10:30 a.m. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p > 0.05), after food restriction RF rats showed a body weight decrease: −13% vs. day eight (p < 0.001) and vs. AC (−22%, p < 0.001) and AL (−26%, p < 0.001) that gained body weight (+10% and +13%, respectively; p < 0.001). ABA showed an additional body weight loss (−9%) compared to RF (p < 0.001) reaching a body weight loss of −22% during the 2-week restricted feeding period (p < 0.001). Food intake was greatly reduced in RF (−38%) and ABA (−41%) compared to AL (p < 0.001). Interestingly, no difference in 1.5-h food intake microstructure was observed between RF and ABA (p > 0.05). Similarly, the daily physical activity was not different between AC and ABA (p > 0.05). The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of ABA compared to AL rats. In conclusion, ABA combining physical activity and restricted feeding likely represents a suited animal model for AN to study pathophysiological alterations and pharmacological treatment options. Nonetheless, cautious interpretation of the data is necessary since rats do not voluntarily reduce their body weight as observed in human AN.


Frontiers in Neuroscience | 2015

Nesfatin-130−59 Injected Intracerebroventricularly Differentially Affects Food Intake Microstructure in Rats Under Normal Weight and Diet-Induced Obese Conditions

Philip Prinz; Pauline Teuffel; Vanessa Lembke; Peter Kobelt; Miriam Goebel-Stengel; Tobias Hofmann; Matthias Rose; Burghard F. Klapp; Andreas Stengel

Nesfatin-1 is well-established to induce an anorexigenic effect. Recently, nesfatin-130−59, was identified as active core of full length nesfatin-11−82 in mice, while its role in rats remains unclear. Therefore, we investigated the effects of nesfatin-130−59 injected intracerebroventricularly (icv) on the food intake microstructure in rats. To assess whether the effect was also mediated peripherally we injected nesfatin-130−59 intraperitoneally (ip). Since obesity affects the signaling of various food intake-regulatory peptides we investigated the effects of nesfatin-130−59 under conditions of diet-induced obesity (DIO). Male Sprague–Dawley rats fed ad libitum with standard diet were icv cannulated and injected with vehicle (5 μl ddH2O) or nesfatin-130−59 at 0.37, 1.1, and 3.3 μg (0.1, 0.3, 0.9 nmol/rat) and the food intake microstructure assessed using a food intake monitoring system. Next, naïve rats were injected ip with vehicle (300 μl saline) or nesfatin-130−59 (8.1, 24.3, 72.9 nmol/kg). Lastly, rats were fed a high fat diet for 10 weeks and those developing DIO were icv cannulated. Nesfatin-1 (0.9 nmol/rat) or vehicle (5 μl ddH2O) was injected icv and the food intake microstructure assessed. In rats fed standard diet, nesfatin-130−59 caused a dose-dependent reduction of dark phase food intake reaching significance at 0.9 nmol/rat in the period of 4–8 h post injection (−29%) with the strongest reduction during the fifth hour (−75%), an effect detectable for 24 h (−12%, p < 0.05 vs. vehicle). The anorexigenic effect of nesfatin-130−59 was due to a reduction in meal size (−44%, p < 0.05), while meal frequency was not altered compared to vehicle. In contrast to icv injection, nesfatin-130−59 injected ip in up to 30-fold higher doses did not alter food intake. In DIO rats fed high fat diet, nesfatin-130−59 injected icv reduced food intake in the third hour post injection (−71%), an effect due to a reduced meal frequency (−27%, p < 0.05), while meal size was not altered. Taken together, nesfatin-130−59 is the active core of nesfatin-11−82 and acts centrally to reduce food intake in rats. The anorexigenic effect depends on the metabolic condition with increased satiation (reduction in meal size) under normal weight conditions, while in DIO rats satiety (reduction in meal frequency) is induced.


Current Opinion in Pharmacology | 2016

Nesfatin-1: current status as a peripheral hormone and future prospects

Philip Prinz; Andreas Stengel

This review summarizes current data focusing on the peripheral effects of NUCB2/nesfatin-1 including the regulation of food intake, glucose homeostasis, lipid metabolism, cardiovascular effects and reproductive functions as well as its possible involvement in psychological disorders. Additionally, we will highlight gaps in knowledge in order to stimulate further research. Lastly, we will give an outlook on potential therapeutic implications of this pleiotropic peptide.


Biochemical and Biophysical Research Communications | 2017

Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats

Philip Prinz; Sophie Scharner; Tiemo Friedrich; Martha Schalla; Miriam Goebel-Stengel; Matthias Rose; Andreas Stengel

Phoenixin is a pleiotropic peptide involved in reproduction, anxiety and recently also implicated in the control of food intake. Besides the 20-amino acid phoenixin, the 14-amino acid phoenixin-14 also shows bioactive properties. However, the expression sites of phoenixin-14 in the brain and peripheral tissues are not yet described in detail. Therefore, a mapping of the brain and peripheral tissues from male and female Sprague-Dawley rats with a specific phoenixin-14 antibody was performed using western blot and immunohistochemistry. High density of phoenixin-14 immunoreactivity was detected in the medial division of the brain central amygdaloid nucleus, in the spinal trigeminal tract and in the spinocerebellar tract as well as in cells between the crypts of duodenum, jejunum and ileum. Medium density immunoreactivity was observed in the bed nucleus of the stria terminalis, in the area postrema, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus nerve as well as in the peripheral parts of the islets of Langerhans in the pancreas. A low density of phoenixin-14 immunoreactivity was detected in the arcuate nucleus, the supraoptic nucleus and the raphe pallidus. After pre-absorption of the antibody with phoenixin-14 peptide, no immunosignals were observed indicating specificity of the antibody. Taken together, the widespread distribution of phoenixin-14 immunoreactivity gives additional rise to the pleiotropic functions of the peptide such as possible effects in gastrointestinal motility, immune functions and glucose homeostasis.


Current Opinion in Pharmacology | 2016

Expression and regulation of peripheral NUCB2/nesfatin-1

Philip Prinz; Andreas Stengel

Nesfatin-1, an 82 amino acid peptide was discovered in 2006 in the rat hypothalamus and described as a centrally acting anorexigenic peptide. Besides its central expression and actions, NUCB2/nesfatin-1 has been subsequently described to be predominantly expressed in the periphery and to exert several peripheral effects. The current review focuses on the expression sites of NUCB2/nesfatin-1 in peripheral tissues of different species and its regulation by nutrition, body weight and various other parameters such as fetal development and sex.


Neuromodulation | 2017

Gastrointestinal Peptides During Chronic Gastric Electrical Stimulation in Patients With Intractable Vomiting: GASTROINTESTINAL PEPTIDES IN GES

Mathieu Meleine; Chloé Melchior; Philip Prinz; Alfred Penfornis; Benoit Coffin; Andreas Stengel; Philippe Ducrotté; Guillaume Gourcerol

Gastric electrical stimulation (GES) is an alternative therapy to treat patients with intractable vomiting. A preclinical study has demonstrated the modulation of the gastrointestinal (GI) peptide ghrelin by GES but such mechanism has never been investigated in patients. The aim of this work was to assess the effect of GES on GI peptide levels in patients with intractable vomiting.


Brain Sciences | 2018

Deep Brain Stimulation—Possible Treatment Strategy for Pathologically Altered Body Weight?

Philip Prinz; Andreas Stengel

The treatment of obesity and eating disorders such as binge-eating disorder or anorexia nervosa is challenging. Besides lifestyle changes and pharmacological options, bariatric surgery represents a well-established and effective-albeit invasive-treatment of obesity, whereas for binge-eating disorder and anorexia nervosa mostly psychotherapy options exist. Deep brain stimulation (DBS), a method that influences the neuronal network, is by now known for its safe and effective applicability in patients with Parkinson’s disease. However, the use does not seem to be restricted to these patients. Recent preclinical and first clinical evidence points towards the use of DBS in patients with obesity and eating disorders as well. Depending on the targeted area in the brain, DBS can either inhibit food intake and body weight or stimulate energy intake and subsequently body weight. The current review focuses on preclinical and clinical evidence of DBS to modulate food intake and body weight and highlight the different brain areas targeted, stimulation protocols applied and downstream signaling modulated. Lastly, this review will also critically discuss potential safety issues and gaps in knowledge to promote further studies.


Neuromodulation | 2017

Gastrointestinal Peptides During Chronic Gastric Electrical Stimulation in Patients With Intractable Vomiting

Mathieu Meleine; Chloé Melchior; Philip Prinz; Alfred Penfornis; Benoit Coffin; Andreas Stengel; Philippe Ducrotté; Guillaume Gourcerol

Gastric electrical stimulation (GES) is an alternative therapy to treat patients with intractable vomiting. A preclinical study has demonstrated the modulation of the gastrointestinal (GI) peptide ghrelin by GES but such mechanism has never been investigated in patients. The aim of this work was to assess the effect of GES on GI peptide levels in patients with intractable vomiting.

Collaboration


Dive into the Philip Prinz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge